POWER HiTESTER 3193-10

Wide Spectrum Power Meter for Comprehensive Device Assessment

DC/0.5Hz to 1MHz broad-band POWER HiTESTER measures up to 6 systems simultaneously.

The POWER HiTESTER 3193-10 is a multi-function power meter for use with single phase power lines to 3 -phase, 4 -wire circuits. Accommodating up to 6 units, it is not only capable of measuring up to 6 single phase systems, but can simultaneously measure the input and output of a 3-phase inverter and provide effective power measurements. Additionally, it supports harmonic analysis and flicker measurement (optional), features which are essential for overall device assessment. Standard features include a GP-IB and RS-232C interface, making it easy to feed data to a personal computer for processing and analysis. This unit is ideal for those requiring greater efficiency in electrical device assessment.

AC/DC CURRENT SENSOR

Rated at 1000A rms
\square Wide bandwidth
■ Super high precision

Complete with functions that answer all your power measurement needs.

Features

Wide range of measurement functions

Capable of measuring voltage, current, active /reactive /apparent power, power factor, phase, frequency, and current, and of integrating power according to polarity, the 3193-10 also provides wave peak and efficiency measurements that are essential to device assessment.

Measure Motor Output

With the optional EXTERNAL SIGNAL INPUT UNIT 9603 , the HiTESTER can take analog input in from torque and revolution measurements and use that information to calculate motor output.

Measurement for Minute Stand-by Power also Available (by special-order) The 9600 and 9601 input units have 10 -times improved current sensitivity, and currents starting from the 20.000 mA range can be measured. (Please inquire for further information.)

■ High Visibility Color LCD

Featuring a wide viewing angle, the color LCD displays a variety of items simultaneously, making it ideal for quickly grasping power usage on the system being measured. Expanded display is possible for any four selected items.

- Harmonic and Flicker Analysis

Harmonic and flicker analysis are possible when using the optional HARMONIC / FLICKER MEASUREMENTS UNIT 9605 .

- High Basic Accuracy of $\pm 0.2 \%$

Measurements of even greater precision can be obtained using the optional 9600 to 9602 input unit, which provides a basic accuracy of $\pm 0.1 \% \mathrm{rdg}, \pm 0.1 \%$ f.s. (With the 9602 , the accuracy of the clamp-on sensor is a factor affecting total accuracy during power measurement.)

- A Variety of Interfaces for Differing Needs \star Connecting to a PC

The RS-232C and GP-IB interface, provided as standard features, make it possible to connect the power meter directly to a PC, allowing efficient measurement, management and analysis of data.
 \star Connecting to a Recorder With 8 selectable D/A outputs and voltage, current and power analog/monitor output (current and voltage only) as standard features, the HiTESTER allows recording of changes and transient fluctuations in waveforms using a
 recording unit.

\star Connecting to a Printer

Data can be output to the optional PRINTER UNIT 9604 .

Thermal line dot printing
72 mm
: printing of items measured, hard copy output of displayed screens, printout of meter settings, printout of various times (such as interval time, timer time, and realtime control time). Printouts are performed either automatically, upon input of an external control signal, or synchronized with an integrator.

DC/0.5Hz to 1MHz broad-band POWER HiTESTER measures up to 6 systems simultaneously.

■ Choose from a variety of input units according to application

Three types of input units are available, including the 9602 AC/DC Clamp Input Unit, which can be used with current levels exceeding 50A under live circuit conditions, as well as the 9600 and 9601 which accept direct input of up to $1000 \mathrm{~V} / 50 \mathrm{~A}$.

- 9600 •• DC/0.5Hz to 1 MHz wide band
- 9601 . . 5 Hz to 100 kHz , for AC only
- 9602 •••DC/0.5Hz to 200kHz clamp input

Choose from a variety sensors including AC Clamp On Sensors 9272-10 and 9290-10, AC/DC Clamp On Sensors 9277, 9278 and 9279, and super high-precision AC/DC Sensors CT6865, 9709, CT6862 and CT6863.

1ch	2ch	3ch	4ch	5ch	6ch
$1 \emptyset 2 \mathrm{~W}$	$1 \varnothing 2 \mathrm{~W}$				
$1 ø 3 \mathrm{~W} / 3 ø 3 \mathrm{~W}$		$1 \emptyset 2 \mathrm{~W}$			
$1 \emptyset 3 \mathrm{~W} / 3 \emptyset 3 \mathrm{~W}$		$1 ø 3 \mathrm{~W} / 3 ø 3 \mathrm{~W}$		$1 \emptyset 2 \mathrm{~W}$	$1 \emptyset 2 \mathrm{~W}$
$1 \emptyset 3 \mathrm{~W} / 3 ø 3 \mathrm{~W}$		$1 \emptyset 3 \mathrm{~W} / 3 ø 3 \mathrm{~W}$		$1 \emptyset 3 \mathrm{~W} / 3 \emptyset 3 \mathrm{~W}$	
$3 \mathrm{~V} 3 \mathrm{~A}(3 \emptyset 3 \mathrm{~W}) / 3 \emptyset 4 \mathrm{~W}$			$1 \emptyset 2 \mathrm{~W}$	$1 \emptyset 2 \mathrm{~W}$	$1 \varnothing 2 \mathrm{~W}$
$3 \mathrm{~V} 3 \mathrm{~A}(3 \emptyset 3 \mathrm{~W}) / 3 \emptyset 4 \mathrm{~W}$			$1 \emptyset 3 \mathrm{~W}$	ø 3 W	$1 \varnothing 2 \mathrm{~W}$
$3 \mathrm{~V} 3 \mathrm{~A}(3 \emptyset 3 \mathrm{~W}) / 3 \emptyset 4 \mathrm{~W}$			3V3	($\quad 3 \mathrm{~W}$ /	4W

Feed-through current sensors

AC/DC 1000A

AC/DC 500A

AC/DC 200A

AC/DC 50A

Clamp-on sensors

■ Simultaneous Measurement of Multiple Systems

Since all units are mutually isolated, the primary and secondary sides of devices or disparate power lines can be measured simultaneously. Simultaneous measurement of single phase 6 wire or 3 phase 2 wire systems which previously required multiple units, can now be handled with one. What's more, measurements of all devices can be taken at the same instant, providing a powerful tool for integrated, all-round device assessment.

Measure all items at same point in time

The Power Analysis Station

Applications of 3193-10
Example of Application With Power Converter
Example of Assessment Trial of EV (Electric Vehicle)
Measure mixed AC and DC components with a single unit.

Even Supports Harmonic / Flicker analysis when using the optional 9605 HARMONIC / FLICKER MEASUREMENTS UNIT .

Graph Display of Harmonics

Voltage, current and power can be analyzed and displayed by bargraphs of harmonic amplitude, content and phase angle.Voltage, current and power can be displayed simultaneously for a single channel, or a single parameter can be displayed simultaneously for each of three channels.

List Display of Harmonics

The harmonic list display shows the amplitude, pro-portion, phase angle and distortion for each harmonic of voltage, current and power. Displaying only proportion, or two parameters simultaneously, such as amplitude and phase angle, is selectable.

Flicker Measurement Display

Displays data during measurement in real-time. Display can also be switched to D measurement and "Pst" value

Waveform Display

The waveform display shows one cycle of the voltage and current waveforms. RMS and peak values can be displayed along with voltage and current waveforms, or voltage and current waveforms for up to three channels can be displayed at the same time.

Vector Display of Harmonics

The harmonic vector display shows the voltage, current and phase angle for each harmonic, making clear the voltage-current phase relationship.

Monitor Display

The relative "d" voltage change $\Delta \mathrm{V} / \mathrm{V}$ and the instantaneous flicker value " $\mathrm{S}(\mathrm{t})$ " can be displayed in a time series, so past variations are clearly displayed.

9605 Specifications (optional)
Installation : Installs in the 3193-10 main unit
Measurement lines: Single-phase 2- and 3-wire, three-phase 4-wire
No. of channels : Up to 3 channels within channels 1 to 6 , depending on 3193-10 wiring mode
Output functions : RS-232C, GP-IB, printer

- Harmonic Waveform Analysis Functions

Measurement range : Fundamental frequency: 1 to 440 Hz PLL system (5 to 440 Hz), external clock system (1 to 5 Hz)
Orders analyzed: Up to 50th harmonic (with 1 to 250 Hz fundamental)
Window width : 16 cycles (for 40 to 70 Hz fundamental)
Windowing type : Rectangular tiling (no gap between or overlap of windows) Amount of data analyzed : 512 points (for 40 to 70 Hz fundamental)
Crest factor : Up to 4 (current), and up to 3 (voltage)
Measurement items : Harmonic level, percentage and phase angle of each order of harmonic wave for each of voltage, current and power. Total up to 50 th harmonic (of 40 to 70 Hz fundamental) for voltage, current and power. Total harmonic distortion for voltage and current (THD-F and THD-R) Measurement of voltage, current, active power, peak voltage and peak current values of the fundamental

Update rate : Every 1 window (except during communications with other devices)
Screen displays : List, graph, vector and waveform
Accuracy* : Harmonic levels; at 45 to 66 Hz
Voltage/current: $\pm 0.5 \%$ rdg. $\pm 0.05 \%$ f.s.
Active power: $\pm 1.0 \%$ rdg. $\pm 0.1 \%$ f.s.
For 45 to $66-\mathrm{Hz}$ fundamental, effective input is 0.1 to 110% of range

Flicker Measurement Function

Measurement range : Fundamental frequency; 45 to 66 Hz , PLL synchronization system Analysis items : dc (relative constant voltage change), d max (max. relative constant voltage change), $\mathrm{d}(\mathrm{t}) 500 \mathrm{~ms}$ (relative voltage change per time), $\mathrm{P} 0.1 /$ P1s/ P3s/ P10s and 30s (cumulative probability), Pst (short-term flicker value), Plt (long-term flicker value)
Screen displays : Measured value, CPF, Pst list, Monitor
Accuracy* : RMS voltage $\pm 0.5 \%$ rdg. $\pm 0.05 \%$ f.s. $(45 \mathrm{~Hz} \sim 66 \mathrm{~Hz})$

* The reading accuracy of the input unit must combined with the analysis accuracy shown above. When used with a clamp sensor, accuracy and frequency characteristics of the clamp must be added to the analysis accuracy above.

Other Analysis Functions

Integration According to Polarity

Positive, negative, and total current and power can be integrated simultaneously for all channels. This makes it possible to grasp the income and outflow of power at a glance.

Analog and D/A Output

Analog (voltage, current, and effective power) and D/ A outputs (any selected eight items) are output as a 5 V range full scale value. (Except for the 1000 V range), 100 ms response time can be obtained by using the FAST setting.

3 Types of Averaging Functions

Select from time average, moving average and exponential average.

- 3ch Frequency Measurement Function

With the frequency ranges, LPF and HPF can be used in combination, allowing measurement of fundamental waveforms and carrier waveforms of inverters.

- Efficiency Calculation Function

Three efficiency calculations can be obtained simultaneously from measured voltage values.

Peak Measurements Function

Voltage and current wave peaks can be measured. The Peak Hold function can be used to find peak values and effective maximums for motor rush current waves.

Wave Monitor Output

With the voltage and current ranges, waveforms are output as $1 V$ full scale values, allowing waveforms to be monitored using devices such as recorders or synchroscopes.

3 Types of Built-in Low Pass Filters

Selectable cutoff frequencies $(500 / 5 \mathrm{k} / 300 \mathrm{kHz})$ allow extraction of the frequency component of fundamental inverter waveforms and provide data compatibility with previous instruments.

- Choose from Three Types of Calculation Algorithms

Three selectable algorithms are provided for calculating apparent power and reactive power, providing compatibility with previous devices

Multi-Channel Recorders

MEMORY HiCORDER MR8847-01/02/03

The Ideal Recorder for Field Use, Easy Portability and Sturdy Construction

- 20M-Sampling/s
- Max. 16 ch + logic 16 ch
- 32M to 256 M -Word Memory (2ch)

MEMORY HiCORDER MR8875

Smart Design - Smart Engineering

- 500k-Sampling/s
- Max. 16ch+Logic 8ch
- Memory 8 M -word by each input unit, total 32 M -words

Optional Input Unit Specifications

	AC/DC DIRECT INPUT UNIT 9600					AC/DC CLAMP INPUT UNIT 9602		
	Voltage	Curi	rent	Active	power	Voltage	Current	Active power
Measurement range	$\begin{gathered} 6.0000 / 15.000 / 30.000 / \\ 60.000 / 150.00 / 300.00 / \\ 600.00 \mathrm{~V} / 1.0000 \mathrm{kV} \end{gathered}$	$\begin{array}{r} \hline 200.00 / 50 \\ 1.0000 / 2.00 \\ 10.000 / 20.00 \end{array}$	$\begin{aligned} & 00.00 \mathrm{~mA} / \\ & 000 / 5.0000 / \\ & 00 / 50.000 \mathrm{~A} \end{aligned}$	Depen combination and curre	ads on of voltage nt ranges	$\begin{gathered} 6.0000 / 15.000 / 30.000 / \\ 60.000 / 150.00 / 300.00 / \\ 600.00 \mathrm{~V} \end{gathered}$	500.00 mA to 1000.0 A (Depends on clamp-on sensor)	Depends on combination of voltage and current ranges
Max.operating input(55Hz)	1000Vrms/1500 V peak	65Arms/10	100 A peak			$650 \mathrm{Vrms} / 850 \mathrm{Vpeak}$	(Depends on clamp-on sensor)	
Crest factor	Lower of either (measured range $\times 6$) / measured value or maximum permissible rated peak / measured value					Lower of either (measured range $\times 6$)/ measured value or maximum permissible rated peak/measured value		
Input resistance	$2 \mathrm{M} \Omega \pm 5 \%$	$1 \mathrm{~m} \Omega$	max.			$2 \mathrm{M} \Omega \pm 5 \%$	$200 \mathrm{k} \Omega \pm 5 \%$	
Accuracy	(Accuracy assured at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}\right)$ at 80% R.H., power factor $=1$, sine wave input, in-phase voltage 0 , after DMAG)							
DC	$\pm 0.1 \% \mathrm{rdg} . \pm 0.2 \% \mathrm{f} . \mathrm{s}$.	\leftarrow		\leftarrow		$\pm 0.1 \% \mathrm{rdg} . \pm 0.2 \% \mathrm{f.s}$.	\leftarrow	\leftarrow
0.5 to 1 Hz	$\pm 0.5 \% \mathrm{rdg} . \pm 0.5 \% \mathrm{f} . \mathrm{s}$.	\leftarrow		\leftarrow		$\pm 0.5 \% \mathrm{rdg} . \pm 0.5 \% \mathrm{f} . \mathrm{s}$.	\leftarrow	\leftarrow
1 to 10 Hz	$\pm 0.2 \% \mathrm{rdg} . \pm 0.2 \% \mathrm{f} . \mathrm{s}$.	\leftarrow		\leftarrow		$\pm 0.2 \% \mathrm{rdg} . \pm 0.2 \% \mathrm{f} . \mathrm{s}$.	\leftarrow	\leftarrow
10 to 45 Hz	$\pm 0.1 \% \mathrm{rdg} . \pm 0.2 \% \mathrm{f.s}$.	\leftarrow		\leftarrow		$\pm 0.1 \% \mathrm{rdg} . \pm 0.2 \% \mathrm{f.s}$.	\leftarrow	\leftarrow
45 to 66 Hz	$\pm 0.1 \% \mathrm{rdg} . \pm 0.1 \% \mathrm{f.s}$.	\leftarrow		\leftarrow		$\pm 0.1 \%$ rdg. $\pm 0.1 \% \mathrm{f} . \mathrm{s}$.	\leftarrow	\leftarrow
66 Hz to 10 kHz	$\pm 0.1 \% \mathrm{rdg} . \pm 0.2 \% \mathrm{f} . \mathrm{s}$.	\leftarrow		\leftarrow		$\pm 0.1 \% \mathrm{rdg} . \pm 0.2 \% \mathrm{f} . \mathrm{s}$.	\leftarrow	\leftarrow
10 k to 50 kHz	$\pm 0.3 \% \mathrm{rdg} . \pm 0.3 \% \mathrm{f.s}$.	\leftarrow		\leftarrow		$\pm 0.5 \% \mathrm{rdg} . \pm 0.5 \% \mathrm{f} . \mathrm{s}$.	\leftarrow	\leftarrow
		Less than 5 A	Greater than 5 A	Less than 5 A	Greater than 5 A			
50 k to 100 kHz	$\pm 0.5 \% \mathrm{rdg} . \pm 0.5 \% \mathrm{f.s}$.	$\pm 0.5 \% \mathrm{rdg}$. $\pm 0.5 \%$ f.s.	$\pm 2.5 \%$ f.s.	$\pm 0.5 \% \mathrm{rdg}$. $\pm 0.5 \%$ f.s.	$\pm 5.0 \% \mathrm{f} . \mathrm{s}$.	$\pm 0.5 \% \mathrm{rdg} . \pm 0.5 \% \mathrm{f.s}$.	\leftarrow	$\pm 0.3 \% \mathrm{rdg} . \pm 0.5 \% \mathrm{f} . \mathrm{s}$.
100k to 300 kHz	$\pm 0.5 \% \mathrm{rdg} . \pm 0.5 \% \mathrm{f.s}$.	$\begin{aligned} & \pm 0.5 \% \text { rdg. } \\ & \pm 0.5 \% \text { f.s. } \end{aligned}$	$\pm 5 \% \mathrm{f} . \mathrm{s}$.	$\begin{aligned} & \pm 1.0 \% \mathrm{rdg} . \\ & \pm 1.5 \% \mathrm{f} . \mathrm{s} . \end{aligned}$	$\pm 10.0 \%$ f.s.	$\pm 15 \%$ f.s. (up to 200 kHz)	\leftarrow	$\pm 30 \%$ f.s.(up to 200 kHz)
300k to 400 kHz	$\pm 1.5 \% \mathrm{rdg} . \pm 0.5 \% \mathrm{f} . \mathrm{s}$.	$\pm 1.0 \% \mathrm{rdg}$. $\pm 0.5 \%$ f.s.		$\begin{aligned} & \pm 1.0 \% \text { rdg. } \\ & \pm 2.5 \% \text { f.s. } \end{aligned}$		- Compatible Clamp (Optional)	9279	CT6862 CT6863
400k to 500 kHz	$\pm 2.0 \% \mathrm{rdg} . \pm 1.0 \% \mathrm{f} . \mathrm{s}$.	$\begin{aligned} & \pm 2.0 \% \mathrm{rdg} . \\ & \pm 1.0 \% \mathrm{f} . \mathrm{s} . \end{aligned}$		$\begin{gathered} \pm 2.0 \% \mathrm{rdg} . \\ \pm 2.5 \% \mathrm{f} . \mathrm{s} . \end{gathered}$		$9272-10$	9277/9278	365/9709
500k to 700 kHz	$\pm 10.0 \% \mathrm{f}$.s.	$\pm 10.0 \% \mathrm{f} . \mathrm{s}$.		$\pm 15.0 \% \mathrm{f}$.s.		With the 9602 , the accur total accuracy during	acy of the clamp-on s	sor is a factor affecting re phase and frequency
700k to 1 MHz	$\pm 15.0 \%$ f.s.	$\pm 15.0 \%$ f.s.		$\pm 30.0 \%$ f.s.				

	AC DIRECT INPUT UNIT 9601		
	Voltage	Current	Active power
Measurement range	60.000/150.00/300.00/6 $00.00 \mathrm{~V} / 1.0000 \mathrm{kV}$	$200.00 / 500.00 \mathrm{~mA} /$ 1.0000/2.0000/5.0000/ $10.000 / 20.000 / 50.000 \mathrm{~A}$	Depends on combination of voltage and current ranges
Max.operating inputspu	1000 Vmss 1500 V peak	$65 \mathrm{Ams/100}$ A pak	
Crest factor	Lower of either (measured range $\times 6$)/ measured valueor maximum permissible rated peak/measured value		
Input resistance	2M $\times 5 \%$	$1 \mathrm{~m} \Omega$ max.	

Accuracy

Assured Accuracy Range for Input Frequency of the 9600 9601 and 9602 each have assured ranges for input frequency.

Note 1: Assured accuracy ranges for different response settings are as follows: FAST (0.1 sec) to DC and greater than $50 \mathrm{~Hz}, \mathrm{MID}(0.8 \mathrm{sec})$ to DC and greater than 10 Hz , SLOW (5.0 sec) to DC or greater than 0.5 Hz
Note 2: Assured accuracy ranges for combined mode measurement are 10 Hz or greater for the AC mode, and DC only for the $\mathrm{AC}+\mathrm{DC}$ mode or DC mode.
Calculation algorithm (Indicated only for single phase, 2 wire and 3 phase, 3 wire (3V3A).Two additional calculation algorithms can be selected for apparentreactive power)

1ø2W		Voltage	Current	Active power	Apparent power	Reactive power	Power factor	Phase
		U_{1}	I_{1}	P_{1}	$\mathrm{S}_{1}=\mathrm{U}_{1} \times \mathrm{I}_{1}$	$\mathrm{Q}=\mathrm{S}_{1} \sqrt{(\mathrm{UII})^{2}-\mathrm{P}_{1}{ }^{2}}$	$\lambda_{1}=\mathrm{S}_{1}\left\|\mathrm{P}_{1} / \mathrm{S}_{1}\right\|$	$\emptyset_{1}=S_{1} \cos ^{-1}\left\|\lambda_{1}\right\|$
S M	$\begin{gathered} 3 ø 3 W \\ (3 V 3 A) \end{gathered}$	$\mathrm{U}_{12,23}=\frac{\mathrm{U}_{1}+\mathrm{U}_{2}+\mathrm{U}_{3}}{3}$	$\mathrm{I}_{1223}=\frac{\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}}{3}$	$\mathrm{P}_{12,23}=\mathrm{P}_{1}+\mathrm{P}_{2}$	$\begin{array}{\|l\|} \hline \mathrm{S}_{12,23}= \\ \frac{\sqrt{3}}{3}\left(\mathrm{U}_{11}+\mathrm{U}_{2} 2+\mathrm{U}_{3} \mathrm{I}_{3}\right) \end{array}$	$a_{10,0 s}=$	$\lambda_{123}=\mathrm{su}\left\|\frac{\mathrm{P}_{123}}{\mathrm{~S}_{123}}\right\|$	$\emptyset_{123}=\mathrm{su} \cos ^{-1} \lambda_{123} \mid$

[^0]Basic specifications
Measurement line : Single phase 2 wire, single phase 3 wire, 3 phase 3 wire (3V3A is possible), 3 phase 4 wire
Measurement item : When using 9600, 9601, 9602 (optional)
Voltage, current, voltage/current peak, effective/reactive/apparent power, power factor, phase, frequency, current/power integration, load rate, efficiency.
When using the 9603 (optional)
Voltage, torque, $\mathrm{r} / \mathrm{min}$, frequency, motor output.
When using the 9605 (optional)
Harmonic, waveform, voltage fluctuation / flicker measurement function.
Display indication range : At the lowest range in the DC mode of Models 9600 \& 9602: 0.2% to 130% At the lowest range in the AC+DC mode of Models 9600 \& $9602: 0.5 \%$ to 130% At the 200 mA range of Model 9601: 0.5% to 130% At 0.1% to 130% of all other ranges.
All range is zero suppressed at less than lower \% value. Valid input range for voltage, current, and power is 0.5% to 110%
Display : 6.4 inch TFT color LCD $(640 \times 480$ dot $)$
Display resolution: 99999 count (except with integration), 9999999 count (with integration)
Rectification method: Switchable between RMS (true root mean square value) and MEAN (average rectified RMS indication). When combined mode DC is selected, its not possible to switch between them.
Display update rate : 8 times $/ \mathrm{sec}$.
Combined mode : DC, AC + DC, AC (AC only when used in combination with 9601 or $9602+$ AC clamp-on sensor)
Analog response time : FAST (0.1 sec.$)$, MID (0.8 sec.), SLOW (5.0 sec.) (Time required for stabilization to within $\pm 1 \%$ when input is changed from 0% to 90%, or 100% to 10% of range.)
Low pass filter: OFF / 500Hz / 5kHz / 300kHz (-3dB) For 9601, 5 k / 300 kHz not available.
Polaityddection regulation filter: OFF $/ 200 \mathrm{~Hz}(-3 \mathrm{~dB})$
Analog output : Voltage / current / active power $\mathrm{DC} \pm 5 \mathrm{~V}$ f.s (1000 V range is $\mathrm{DC} \pm 3.333 \mathrm{~V}$ f.s.)
Monitor output : Voltage / current: 1Vrms f.s. (1000 V range is 0.6667 V rms f.s.)
[Voltage/ Current/ Active power measurement]
Measurement range : See Page 5 specifications for individual input units
[Integration measurement]
Number of measurements: 64 times/sec
Measurement range: 0 to ± 9999999 TAh / TWh (integration time up to 10,000 hours)
[Power factor/ Phase angle measurement]
$\begin{aligned} \text { Measurement range } \quad: & -1.0000 \text { (lead) to } 0.0000 \text { to } 1.0000 \text { (lag) } \\ & -180^{\circ} \text { (lead) to } 0.00^{\circ} \text { to } 180.00^{\circ} \text { (lag) }\end{aligned}$

[Frequency measurement]

Number of channels : Max. 3ch (selection of voltage or current for arbitrary channel)
Effective input range: 0.5 Hz to 2 MHz
Measurement range : Auto / $50 \mathrm{~Hz} / 500 \mathrm{~Hz} / 50 \mathrm{kHz} / 2 \mathrm{MHz}$
[Wave peak measurement]
Measurement items : Select either voltage or current for each unit (Shows absolute value of max.)
Effective Input Range : Effective value of sine wave is within effective input permissible in the range
[Motor output (Pm) measured] 9603 (optional) external input unit required
Measurement method : Digital calculation from measured voltage or pulse signal Effective when 9603 ch A is torque (any of $\mathrm{N} / \mathrm{m}, \mathrm{mN} / \mathrm{m}, \mathrm{kN} / \mathrm{m}, \mathrm{kgf} / \mathrm{m}$, $\mathrm{kg} / \mathrm{cm}$), and ch B is r / m
Display indication range : 0.1% to 130% of 9603 voltage range (polarity not indicated) Calculation algorithm : Set to required format

[Efficiency measurement]

Calculable factors : Maximum of 3 formats
Calculated items : P for each input unit, Pm when combined with 9603 (Items measured with 9605 not allowed)
[D/A output]
Number of channels : 8ch (12 bit D/A converter polarity + 11bit)
Output impedance : $100 \Omega \pm 5 \%$
Output items : Outputs 8 arbitrarily selected items
Output voltage : DC $\pm 5 \mathrm{~V} / \mathrm{f} . \mathrm{s}$.
Output update rate : 16 times/sec
[Interface]
GP-IB : Conforms to IEEE-488.1 1987, with reference to IEEE-488.2 1987
RS-232C : Start-stop synchronous, with baud rate of 2400 or 9600 bits/sec

[External Control]

Functions : Integration start / stop control, Integration data reset, External
A/D (For display update when power meter display is in hold mode), Manual print control
Control signal level : From $0 / 5 \mathrm{~V}$ logic signal or short//open contact signal

[Other functions]

Scaling : PT/CT ratio Set range 0.0001 to 99999
Averaging : Time average (set interval time, timer time, and average of realtime control time)
Moving average (number of samples: $8 / 16 / 32 / 64$) Exponential average (attenuation factor: $8 / 16 / 32 / 64$)
Multilingual display : Japanese/English screen display switching
Set time (all types) : Interval control time (10 sec to 100 hours) in 10 sec increments (When used in combination with printer, auto select increments) Timer control time (1 min to 10000 hours) in 1 minute increments Realtime control time, 1 minute increments
[Harmonic / Flicker measurement] 9605 (optional) required
Measurement item : See Page 4 specifications for 9605

Measurement accuracy $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}\right)\right.$, Less than 80% rh, warm up time greater than 1 hour, sine wave input, power factor $=1$, in-phase voltage $\left.=0\right)$

V, A, W : Per accuracy table on page 5
Apparent / reactive : ± 1 dgt. with respect to calculation from measured value (U,I,P) power sum value is max. $\pm 3 \mathrm{dgt}$.
Integration $: \pm 1$ dgt with respect to values calculated from measurements (I, P)
Power factor : Max. \pm 3dgt with respect to values calculated from measurements (U,I, P)
Phase angle : Max. \pm ddgt with respect to values calculated from measurements (U,I,P)
Frequency $\quad: \pm 0.1 \%$ rdg. ± 1 dgt. $\left(0^{\circ} \mathrm{C}\right.$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$, for sine wave input between 10% to 130% of U/I range)
Wave peak $: \pm 1 \%$ (at 0.5 Hz to 1 kHz), $\pm 2 \%$ (at 1 kHz to 10 kHz), $\pm 10 \%$ (at 10 kHz to 100 kHz)

Motor output : $\pm 1 \mathrm{dgt}$ for calculations of each measured value Efficiency : Max. ± 7 dgt with respect to values calculated from measurements of items substituted into algorithm
Thermal coefficient : Within $\pm 0.03 \% \mathrm{f} . \mathrm{s} /{ }^{\circ} \mathrm{C}$
Effect of in-phase : Within $\pm 0.05 \%$ f.s
voltage $\quad(1000 \mathrm{Vrms}, 50 / 60 \mathrm{~Hz}$, between shorted voltage input terminals and case)
Effect of power factor: $\pm 0.15 \% \mathrm{f} . \mathrm{s}$ (power factor $=0$)
Actual time : $\pm 25 \mathrm{ppm} \pm 1$ dgt. $\left(0\right.$ to $40^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right.$ to $\left.41^{\circ} \mathrm{F}\right)$)
D/A output : Display accuracy - $\pm 0.2 \%$ f.s
Analog output : Display accuracy - $\pm 0.2 \%$ f.s
Monitor output : Display accuracy - $\pm 0.2 \%$ f.s (less than 100 kHz) Display accuracy - $\pm 3 \mathrm{~dB}$ (100 k to 1 MHz)

General Specifications

Location for use

Ambient use humidity

Ambient storage humidity
Maximum rated voltage to earth

Indoors, altitude to 2000 m, Pollution level 2 Power meter, $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $104^{\circ} \mathrm{F}$), rh below 80% (no condenstion) When using printer, $5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(41^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$, rh below 80% $-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(14^{4} \mathrm{~F}\right.$ to $\left.122^{2} \mathrm{~F}\right)$, rh below 80% and no condensation 9600 and 9601 Voltage input terminal, Current input terminal 600 V measurement category III (expected transient overvoltage: 6000 V) 1000 V measurement category II (expected transient overvoltage: 6000 V)
Using with the 9602
Voltage input terminal
600 V measurement category III (expected transient overvolage: 6000 V)
Withstand voltage
($50 / 60 \mathrm{~Hz}, 1$ minute)

AC5.55kV between U/I terminal and unit case, between U/I terminal and power supply plug (for 9600 and 9601), between U terminal and clamp input terminal, between U terminal and unit case, between U input terminal and power supply plug (for 9602)

Certifications	Safety
	EN61010
	EMC
	EN61326
	EN61000-3-2
	EN61000-3-3
Power supply	AC100V/ $120 \mathrm{~V} / 200 \mathrm{~V} / 230 \mathrm{~V}$ (switched automatically), $50 / 60 \mathrm{~Hz}$
Maximum rated power	150VA max.
Dimensions, mass	Approx $430 \mathrm{~W} \times 150 \mathrm{H} \times 370 \mathrm{D}$ mm, Approx 13 kg (Approx $16.93^{\prime \prime}(\mathrm{W}) 5.91^{\prime \prime}$ (H)14.57" (D), Approx 458.6 oz.) (in configuration including $96005 \mathrm{ch}, 9603,9604$)
	(Not including projections such as terminals, feet, and handles)
Accessories	Power cord 1, ground adapter (3P to 2P) 1, connector 1

Current Sensors(Optional) Specifications $^{\text {St }}$
To use the Clamp-On sensor, be sure to order the factory option 9602 AC/DC Clamp Input Unit.

	AC/DC Current Sensors							AC Clampon Sensor	Conversion Adapter for AC only
	Feed-through current sensors				Clamp-on sensors				CT
Model	CT6865 *	9709 *	CT6863 *	CT6862 *	9279	9278	9277	9272-10 *	9290-10
Physical appearance				${ }^{(A)}$					
Primary current rating	1000A	500A	200A	50A	500A	200A	20A	200A/20A	1500A
Measurable conductor diameter	¢36mm (1.42in)	\$36mm (1.42in)	$\phi 24 \mathrm{~mm}$ (0.94in)	\$24mm (0.94in)	$\phi 40 \mathrm{~mm}$ (1.57in)	$\phi 20 \mathrm{~mm}$ (0.79in)	mm (0.79in)	¢46mm (1.81in)	$\phi 55 \mathrm{~mm}$ (2.17in)
Accuracy 45 to 66 Hz $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F} \pm 5.4^{\circ} \mathrm{F}\right)$	$\left(\begin{array}{c} \pm 0.05 \% \text { rdg. } \\ \pm 0.01 \% \mathrm{f.s.} \\ \text { (vibration amplitude) } \\ \pm 0.2^{\circ} \text { max.(phase, } \\ \text { DC not specificied) } \end{array}\right.$	Warming up for at least 10 minutes: $\pm 0.05 \%$ rdg. $\pm 0.01 \%$ f.s. (vibration amplitude) $\pm 0.2^{\circ} \mathrm{max}$. phase, DC not specificied)	$\pm 0.05 \%$ ± 0.0 (vibration $\pm 0.2^{\circ}$ (phase, DC	rdg. 1% f.s. amplitude) max. ot specificied)	After de for (vi (phas	aussing and w at least 30 min $\pm 0.5 \%$ rdg. $\pm 0.05 \% \mathrm{f}$ ration amplitu $\pm 0.2^{\circ}$ max. DC not spec	ing up s: ied)	$\pm 0.3 \% \mathrm{rdg}$. $\pm 0.01 \%$ f.s. (vibration amplitude) $\pm 0.2^{\circ}$ max. (phase)	$\pm 1.5 \%$ rdg. (vibration amplitude) $\pm 0.2^{\circ} \mathrm{max}$. (phase)
Frequency characteristics (vibration amplitude, phase) (deviation from the basic accuracy)	DC to 16 Hz $: \pm 0.1 \%$ max. To 5 kHz $: \pm 5.0 \%$ max. To 20 kHz $: \pm 30 \% \max$	DC to 45 Hz $: \pm 0.2 \%$ max. To 10 kHz $: \pm 2.0 \% \max .$ To 100 kHz $: \pm 30 \% \text { max. }$	DC to 16 Hz : $: \pm 0.1 \%$ max. To 100 kHz $\pm 2.0 \%$ max. To 1 MHz $: \pm 30 \%$ max.	DC to 16 Hz $: \pm 0.1 \%$ max. To 100 kHz $: \pm 5.0 \% \max .$ To 1 MHz $: \pm 30 \% \max .$	$\begin{gathered} \text { DC to } 1 \mathrm{kHz} \\ : \pm 1.0 \% \text { max. } \\ \text { To } 10 \mathrm{kHz} \\ : \pm 2.5 \% \text { max. } \\ \text { To } 20 \mathrm{kHz} \\ : \pm 5.0 \% \text { max. } \end{gathered}$	DC to $: \pm 1.0$ To 50 k ± 2.5 To 100 k ± 5.0	z max. max. max.	1 Hz to 5 kHz : $\pm 2.0 \%$ max. To 10 kHz : $\pm 2.5 \%$ max. To 100 kHz $: \pm 30 \%$ max.	$\begin{aligned} & 20 \mathrm{~Hz} \text { to } 5 \mathrm{kHz} \\ & : \pm 2.0 \% \max \end{aligned}$
others	Set CT ratio : 2								$\begin{array}{\|c\|} \hline 80 \mathrm{~mm}(3.15 \mathrm{in}) \\ \times 2 \mathrm{~mm}(0.79 \mathrm{in}) \text { busbar } \\ \hline \end{array}$

*For further details, please refer to the individual product catalog for the instrument.

Ordering information

POWER HiTESTER 3193-10 (main unit only)

The POWER HiTESTER 3193-10 cannot operate alone. A factory option input unit must be purchased.
() : 9600, 9601, 9602 can be selected.

	1ch	2ch	3ch	4ch	5ch	6ch
Pattern A	$1 \emptyset 2 \mathrm{~W}$ ($1 \emptyset 2 \mathrm{~W}$ ($1 \emptyset 2 \mathrm{~W}$	$1 \varnothing 2 \mathrm{~W}(\quad)$	$1 \emptyset 2 \mathrm{~W}(\quad)$	$1 \emptyset 2 \mathrm{~W}$
Pattern B	$1 \emptyset 3 \mathrm{~W} / 3 \emptyset 3 \mathrm{~W}(\quad \times 2)$		$1 \emptyset 2 W($	$1 \emptyset 2 \mathrm{~W}(\quad)$	$1 \emptyset 2 \mathrm{~W}(\quad)$	$1 \emptyset 2 \mathrm{~W}$
Pattern C	$1 \emptyset 3 \mathrm{~W} / 3 \emptyset 3 \mathrm{~W}(\quad \times 2)$		$1 \emptyset 3 \mathrm{~W} / 3 \emptyset 3 \mathrm{~W}(\quad \times 2)$		$1 \emptyset 2 \mathrm{~W}(\quad)$	102 W
Pattern D	$1 \emptyset 3 \mathrm{~W} / 3 \emptyset 3 \mathrm{~W}(\times 2)$		$1 \emptyset 3 \mathrm{~W} / 3 \emptyset 3 \mathrm{~W}(\quad \times 2)$		$1 \emptyset 3 W / 3 \emptyset$)
Pattern E	$3 \mathrm{~V} 3 \mathrm{~A}(3 \emptyset 3 \mathrm{~W}) / 3 \emptyset 4 \mathrm{~W}$		$\times 3)$	$1 \emptyset 2 \mathrm{~W}(\quad)$	$1 \varnothing 2 \mathrm{~W}$	¢ 2W
Pattern F	$3 \mathrm{~V} 3 \mathrm{~A}(3 \emptyset 3 \mathrm{~W}) / 3 \emptyset 4 \mathrm{~W}$		$\times 3$)	$1 \emptyset 3 \mathrm{~W} / 3 \varnothing$	N ($\times 2$)	$1 \emptyset 2 \mathrm{~W}$
Pattern G	3V3A (3ø 3 W) / $3 \emptyset 4 \mathrm{~W}$		$\times 3$)	3 V 3 A (3ø	W) / 3 ¢ 4W	$\times 3)$

Notes on input unit selection

- Use the same input unit for a particular measurement line.
- Install units in succession starting from channel 1.
- For the 9603 only one unit can be installed.
- When the 9602 is selected, use an optional clamp-on sensor.

Options that can be installed at the factory
(specify at time of order)

AC/DC DIRECT INPUT UNIT 9600

AC DIRECT INPUT UNIT 9601
AC/DC CLAMP INPUT UNIT 9602
EXTERNAL SIGNAL INPUT UNIT 9603
PRINTER UNIT 9604
HARMONIC / FLICKER MEASUREMENTS UNIT 9605
*Voltage cables are not supplied. Also, please contact your HIOKI distributor for clip type leads or other special needs.

Options

AC/DC CURRENT SENSOR CT6865 (1000A AC/DC)
AC/DC CURRENT SENSOR 9709 (500A AC/DC)
AC/DC CURRENT SENSOR CT6863 (200A AC/DC)
AC/DC CURRENT SENSOR CT6862 (50A AC/DC) UNIVERSAL CLAMP ON CT 9279 (500A AC/DC, No CE marking)
UNIVERSAL CLAMP ON CT 9278 (200A AC/DC)
UNIVERSAL CLAMP ON CT 9277 (20A AC/DC) CLAMP ON SENSOR 9272-10 (20/200A AC)
CLAMP ON ADAPTER 9290-10 (1500A AC, ratio10:1)
VOLTAGE CORD L9438-50 (1 each red and black, approx 3 m)
RECORDING PAPER 9232 ($10 \mathrm{~m}, 10$ roll, For 9604)

Note: Company names and Product names appearing in this catalog are trademarks or registered trademarks of various companies.

HIOKI E.E. CORPORATION

HEADQUARTERS:

81 Koizumi, Ueda, Nagano, 386-1192, Japan
TEL + 81-268-28-0562 FAX +81-268-28-0568
http://www.hioki.com / E-mail: os-com@hioki.co.jp HIOKI SINGAPORE PTE. LTD.:
TEL +65-6634-7677 FAX +65-6634-7477
E-mail: info@hioki.com.sg
HIOKI USA CORPORATION:
TEL +1-609-409-9109 FAX +1-609-409-9108 HIOKI KOREA CO., LTD.:
http://www.hiokiusa.com/E-mail: hioki@hiokiusa.com E-mail: info-kr@hioki.co.jp
All information correct as of Jul. 26, 2013. All specifications are subject to change without notice.

HIOKI INDIA PRIVATE LIMITED:
TEL +91-124-6590210 FAX +91-124-6460113
TEL +91-124-6590210
E-mail: hioki@hioki.in

[^0]: Note 1: The above calculation algorithm is for a single phase, 2 wire input to ch 1 , and 3 phase, 3 wire input to ch $1 / 2 / 3$ (3 voltage, 3 current).
 Note 2: The "s" before each power factor or phase operation indicates the lead or lag of current phase in relation to voltage. The "-" sign means current phase leads voltage and when there is no symbol, it lags. "su" is "-" when the sum of reactive power is negative and "+" (but unsigned) when it is positive.

