

PPH-Series

Programmable High Precision D.C. Power Supply

FEATURES

- 3.5"TFT LCD Display
- High Measurement Resolution: $1 \mathrm{mV} / 0.1 \mu \mathrm{~A}$ for 5 mA range.
- Transient Recovery Time: $\leqq 40 \mu$ S within $100 \mathrm{mV} ;<80 \mu$ s within 20 mV
- Current Sink Function
- Pulse Current Measurement (Pulse width min.: 33μ s)
- Long Integration Current Measurement
- Built-in DVM Measurement Function
- Sequence Function (Sequence power output)
- Built-in Battery Simulation Function (CH1 of PPH-15xxD)
- OVP, OCP, OTP \& Temperature Display for Heat Sink
- Support USB (Device \& Host)/GPIB/LAN
- Five Groups of Save/Recall Setting
- External Relay Control

GயIMSTEK
Simply Reliable

Swift Responses with Accurate Measurement

PPH-Series high precision measurement capability achieves the maximum resolution of $1 \mathrm{mV} / 0.1 \mu \mathrm{~A}$ and the smallest pulse current width of $33 \mu \mathrm{~s}$ that satisfy customers' measurement application requirements of high resolution and pulse current. Fast load current variation will result in voltage sag for general power supplies that will have an impact on DUT's internal circuit operation. PPH-Series is equipped with the excellent transient recovery time, which can, in less than $40 \mu \mathrm{~s}$, recover the output voltage to within 100 mV of the previous voltage output when the current level changes from 10% to 100% of the full scale. Furthermore, conventional power supplies do not have sufficient response speed to promptly respond to set voltage value once the set voltage is changed. PPH-15xxD has a rise time of 0.2 ms and a fall time of 0.3 ms , which are 100 times faster than that of conventional power supplies. Therefore, PPH-15xxD can provide DUT with a stable output voltage even when DUT is operating under large transient current output. The internal high-speed sampling circuit design of PPH-15xxD, with the sample rate of 64 K , can conduct pulse current measurement without using a current probe and oscilloscope. The current read back accuracy is $0.2 \%+1 \mu \mathrm{~A}$ (equals to $11 \mu \mathrm{~A}$) at 5 mA range, and the read back resolution is $0.1 \mu \mathrm{~A}$ that allow DUT to be measured with a high accuracy level. Unlike battery, general power supplies, which do not have the characteristics of fast transient recovery time, can not maintain a stable power supply for cellular phone, wireless device, and wearable device which produce large transient pulse current load for hundreds of $\mu \mathrm{s}$ to dozens of ms when in use. PPH-15xxD, different from general power supplies, has the characteristics of fast transient recovery time. While simulating battery to output pulse current, PPH-15xxD can quickly compensate the voltage drop caused by pulse current. PPH-15xxD's CH 1 has the built-in battery simulation function, which can define output impedance settings so as to accurately simulate battery's impedance characteristics during battery discharge. Fast transient recovery time and built-in battery simulation function together facilitate PPH-15xxD to accurately simulate battery's real behavior pattern so as to conduct product tests.

PPH-15xxD is not only suitable for simulating battery, charger and supplying power to DUT, but also ideal for simulating an electronic load to conduct discharge tests with its sink current capability. The sink current function allows PPH-15xxD to simulate a voltage source with the sink current capability. The maximum sink current of $\mathrm{PPH}-15 \times x \mathrm{D}$'s CH 1 is 3.5 A and for CH 2 is 3 A . Long integration current measurement can be utilized to conduct average current measurement for periodical pulse current in a long period of time that is applied to analyze power consumption for a period of time. One of the applications is to measure the average power consumption of a cellular phone in use so as to conduct the internal RF module parameter analysis. The maximum pulse current measurement range of CH 1 is 5 A and for CH 2 is 3 A . The built-in sequence function of CH 1 provides users with 1000 steps to edit sequential outputs, including voltage, current and execution time. The built-in DVM function of CH 2 has a voltage range from 0 to +20 VDC that saves users the cost of purchasing an additional voltage meter.

PPH-15xxD provides OTP function and shows heat sink temperature on the upper right corner of the display screen. Other than that, features such as five sets of system setting values for the SAVE/RECALL function, 10 sets of Power On Setup Settings, Key-Lock function to prevent unauthorized inputs, temperature-controlled fan to reduce noise, hardcopy to save screen information, and external relay control device together augment PPH-15xxD's usability. PPH-Series supports test requirements of Profile1, Profile2 and Profile3 from USB Power Delivery (PD) constructed by USB-IF association.

A. MOBILE COMMUNICATIONS APPLICATIONS

The battery simulation function and pulse current measurement function of PPH-15xxD are ideal for mobile communications measurements including tests of cellular phone, wireless, blue tooth peripheral and wearable device. Monitoring pulse current of cellular phone in use is a very important test, which can be done by using one channel to simulate load and the other channel to simulate USB charging device. By so doing, charging and measuring current changes can be achieved at the same time.

A Charger-simulating Source and Load Current Test

B. FAST RESPONSE TO LOAD AND VOLTAGE CHANGES

PPH-Series

When DUT such as cellular phone switches to idling, receiving or transmitting mode, the current drawn from power supply changes over tenfold. The sudden current change will cause the supplied voltage to drop as well. The conventional power supply is considered a dull device since it will take several milliseconds for the dropped voltage to return to the original level. PPH-15xxD is designed to simulate battery response when a significant voltage

Conventional Power Supply
drop occurs. Recovery time of $40 \mu \mathrm{~S}$ or less is guaranteed when the maximum voltage drop is within 100 mV . Moreover, when users change the voltage level and conventional power supply does not have sufficient speed to reach the set level, PPH-15xxD provides a rise time of 0.2 ms and a fall time of 0.3 ms , which are hundreds times faster than that of the conventional power supplies.

0.1μ A Resolution for PPH-Series

PPH-Series provides $0.2 \%+7 \mu \mathrm{~A}$ readback accuracy and $0.1 \mu \mathrm{~A}$ resolution for high precision of current measurement. For example, when portable device works in the sleep or standby
mode, the current is drawn at a low level. The low current consumption under standby or sleep mode can be measured accurately.

D. MEASUREMENTS FOR POWER CONSUMPTION ANALYSIS

Voltage and Current Waveforms of the Receiving Signals of a Cellular Phone

One particular requirement of power consumption for portable wireless communications devices is Pulse Current. Portable devices such as cellular phones must transmit and receive (detect) signal periodically by drawing pulse current instead of constant current from battery to ensure devices' sound connection in network. To analyze the transient power consumption of a DUT, the peak of short pulse current and average current measurements
over a long period of time are crucial. PPH-Series provides pulse current and long integration functions, the former can measure the peak value of a pulse, the latter can measure the average value of pulses. PPH-Series provides DUT with pulse current measurement and analyzes the transient power consumption to qualify the device for specified power consumption requirements.

E. LONG INTEGRATION CURRENT MEASUREMENT

Long Integration Current Measurement

Long integration current measurement is to measure the average current of periodical pulse current in a long period of time. The measured pulse current must be a complete periodical waveform or multiple complete periodical waveforms. The total measurement time is up to 60 seconds. Measurements can be taken from pulse's positive edge trigger or negative edge trigger. Users can also take measurements from the beginning of power output. Long integration current measurement is to analyze power consumption for a period of time. For instance, users can measure the average power consumption of a cellular phone in use to analyze its internal RF module parameters.

F. PULSE CURRENT MEASUREMENTS

The Time Specified for the Measurement
PPH-Series DC power supply can perform current measurements for pulsing loads. Its several built-in measurement modes include :

- High Measured Current-measure the peak current of the pulse train. - Low Measured Current-measure the low current of the pulse train.
- Average Transmit Current-measure the average current of the pulse train.

The high, low, and average measurements of a pulse are illustrated as above :

Pulse Current Measurement
To avoid false pulse detection, users can use a trigger level of up to $5 \mathrm{~A}(\mathrm{CH} 1)$. All pulses, noise or other transients that are less than set trigger level will be ignored. The manual integration time range setting is $33 \mu \mathrm{~s}$ to $833,333 \mu \mathrm{~s}$. Pulse current measurement can measure transient current consumption to provide the information for the allocation of power supply system for products' preliminary design, i.e. power supply circuits, battery selections for clients' product analyses. Portable communications products, i.e. RF modules and designs based upon blue tooth system can better use pulse current measurement function.

G. SINK CURRENT FUNCTION

PPH-Series and an Electrical Potential Circuit

Allowable Sink Current for 3.5A

When connecting with an electric potential circuit and the output voltage of the tested electric potential circuit is greater than that of PPH-Series by approximately 0.3 V to 2.5 V , PPH-Series will automatically convert its power supply role to the sink current role acting as a load of voltage source. At this time, the voltage setting

H. SEQUENCE FUNCTION

Functional Setting Page for Sequence Function

For the practical usage, $\mathrm{PPH}-15 \times x \mathrm{D}$ can be programmed to output a sequential voltage variation according to the requirements. There are 1000 steps for users to edit output voltage, current and execution time. Programmable execution
time range is from 0.001 second to 3600 seconds and the resolution is 0.001 second. Programmable recurring frequency is from 1 to 9999 or it can be set to infinite execution (set recurring frequency to 0).

I. BATTERY SIMULATION FUNCTION

Battery Equivalent Model

PPH-15xxD's battery simulation function is equivalent to a variable resistance circuit internally connected in series to simulate battery's output impedance. The function can also be regarded as a power supply with a variable internal resistor. The variable internal resistance range is from 0.000Ω to 1.000Ω and
the resolution is $1 \mathrm{~m} \Omega$. PPH-15xxD can be utilized as a battery or an ideal voltage source Vset to be connected with variable resistance Res in series. The following diagram shows battery simulation to produce output voltage Vout.

BUILT-IN DIGITAL VOLTMETER

DVM Input for PPH-15xxD

The built-in Digital Volt-Meter (DVM) of PPH-Series has a dedicated input terminal located on the front panel. With the DC voltage measurement range from 0 to $+20 \mathrm{VDC}, \mathrm{PPH}$-Series not only provides power supply for DUT but also measures the voltage on DUT. The read back accuracy reaches $\pm(0.05 \%+3 \mathrm{mV})$ and read
back resolution is 1 mV . Users are able to save the cost of purchasing an extra voltage meter. Furthermore, DVM measurements can be remotely controlled by SCPI commands via a PC.

K. EXTERNAL RELAY CONTROL

Limit Relay

Trip Relay

PPH-Series provides Limit relay and Trip relay modes and is equipped with corresponding output ports, in which output signals control external relay. Under Limit relay mode and the current limit is reached, PPH-Series will switch from Constant Voltage to Constant Current automatically. Under "Trip relay" mode and the current limit is reached, PPH-Series will turn output off. Furthermore, External Relay control can be used if users simultaneously use other devices for test system. When "Limit Relay" mode is selected and the current limit is reached, External

Relay Can be Driven by Using Internal +5 V or External Power Source :

Using the +5 VDC relay output to drive an external relay. Ensure the current does not exceed 150 mA .

Relay control signal will go high and will return back to the low level when the current level goes back below the constant current setting. When "Trip Relay" mode is selected and the current limit is reached, the relay control signal will go high and the output is disabled. When the output goes back on and the current is less than the current setting, the relay control signal will back to the low level. Users can use relay control signal to control other devices for test system.

SELECTION GUIDE

Model		PPH-1503	PPH-1503D	PPH-1506D	PPH-1510D
Channel		1	2	2	2
Dual Range Output	Channel 1 Channel 2	$\begin{aligned} & 0 \sim 15 V / 0 \sim 3 A \text { or } \\ & 0 \sim 9 V / 0 \sim 5 A \\ & N A \end{aligned}$	$\begin{aligned} & 0 \sim 15 \mathrm{~V} / 0 \sim 3 \mathrm{~A} \text { or } \\ & 0 \sim 9 \mathrm{~V} / 0 \sim 5 \mathrm{~A} \\ & 0 \sim 12 \mathrm{~V} / 0 \sim 1.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0 \sim 15 \mathrm{~V} / 0 \sim 3 \mathrm{~A} \text { or } \\ & 0 \sim 9 \mathrm{~V} / 0 \sim 5 \mathrm{~A} \\ & 0 \sim 12 \mathrm{~V} / 0 \sim 3.0 \mathrm{~A} \end{aligned}$	0~15V/0~3A or 0~9V/0~5A Rear Terminal: 0~10A(0~4.5V) 0 to $12 \mathrm{~V} / 0$ to 3.0 A
Display		3.5 Inch TFT LCD			
Current Measurement Range		5A/5mA	5A/500mA/5mA(CH1)	5A/500mA/5mA(CH1)	10A/500mA/5mA(CH1)
CV\&CC		\checkmark	\checkmark	\checkmark	\checkmark
Built-in DVM Measurement Function		\checkmark	\checkmark (CH2)	\checkmark (CH2)	\checkmark (CH2)
Pulse Current Measurement		\checkmark	\checkmark	\checkmark	\checkmark
Long integration Current Measment		\checkmark	\checkmark	\checkmark	\checkmark
Battery Simulation		NA	\checkmark (CH1)	\checkmark (CH1)	\checkmark (CH1)
Automated Sequential Ouput		\checkmark	\checkmark (CH1)	\checkmark (CH1)	\checkmark (CH1)
High Measurement Resolution		$\checkmark(1 \mathrm{mV} / 0.1 \mu \mathrm{~A})$			
Sink Current Capability		\checkmark (Max: 2A)	\checkmark (Max : 3.5A)	\checkmark (Max : 3.5A)	\checkmark (Max : 3.5A)
Selectable Output From Front or Rear Panel		\checkmark	\checkmark	\checkmark	\checkmark
Relay Output Control		\checkmark	\checkmark	\checkmark	\checkmark
Memory		5 Sets	5 Sets	5 Sets	5 Sets
Sample Rate		60K	64K	64K	64K
Lock Function		\checkmark	\checkmark	\checkmark	\checkmark
Protection Function		OVP / OTP / OCP			
Four Wire Output Open Circuit Protection		NA	\checkmark	\checkmark	\checkmark
Temperature Display for Heat Sink		NA	\checkmark	\checkmark	\checkmark
Standard Interface: LAN, USB, Analog Control Interface	$\begin{aligned} & \text { GPIB } \\ & \text { USB } \\ & \text { LAN } \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned} \text { (CDC) }$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned} \text { (TMC) }$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \sqrt{\prime} \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$

PPH-1503

1. LCD Display
2. Operation Keys
3. Voltmeter Terminals (DVM)
4. Function Keys
5. Output Terminals (SOURCE and SENSE)
6. Power On/Off Switch
7. Rear Panel Outputs and DVM Inputs
8. External Relay Control Port
9. LAN Port
10. USB Port
11. GPIB Port
12. AC Power Socket and Fuse

| CE | USB
 Host | USB
 Device | Front
 Output | PC
 Sottware |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LAN | GPIB | Labvew
 Diver | Rear
 Output | |

PPH-1503D/1506D/

1. LCD Display
2. Operation Keys
3. Voltmeter Terminals (DVM)
4. Function Keys
5. Output Terminals (SOURCE and SENSE)
6. Power On/Off Switch
7. CH2 Output
8. External Relay Control Port
9. LAN Port
10. USB Port
11. GPIB Port
12. AC Power Socket and Fuse
13. CH1 Output
14. USB Port (Host)

SPECIFICATIONS								
Model	发	PPH-1503	PPH-1503D		PPH-1506D		PPH-1510D	
OUTPUT RATING	Number of Output Channel Channel No. Power Voltage Current Output Voltage Rising Time Output Voltage Falling Time	1	2		2		2	
		$\begin{aligned} & \mathrm{Ch} 1 \\ & 45 \mathrm{~W} \\ & 0 \sim 15 \mathrm{~V} \text { or } 0 \sim 9 \mathrm{~V} \\ & 0 \sim 3 \mathrm{~A} \text { or } 0 \sim 5 \mathrm{~A} \end{aligned}$	Ch 1 45W $\begin{aligned} & 0 \sim 15 \mathrm{~V} \text { or } 0 \sim 9 \mathrm{~V} \\ & 0 \sim 3 \mathrm{~A} \text { or } 0 \sim 5 \mathrm{~A} \end{aligned}$	$\begin{gathered} \mathrm{Ch} 2 \\ 18 \mathrm{~W} \\ 0 \sim 12 \mathrm{~V} \\ 0 \sim 1.5 \mathrm{~A} \end{gathered}$	$\begin{aligned} & \text { Ch } 1 \\ & 45 \mathrm{~W} \\ & 0 \sim 15 \mathrm{~V} \text { or } 0 \sim 9 \mathrm{~V} \\ & 0 \sim 3 \mathrm{~A} \text { or } 0 \sim 5 \mathrm{~A} \end{aligned}$	$\begin{gathered} \text { Ch } 2 \\ 36 \mathrm{~W} \\ 0 \sim 12 \mathrm{~V} \\ 0 \sim 3.0 \mathrm{~A} \end{gathered}$	$\begin{array}{\|l\|} \hline \text { Ch } 1 \\ 45 \mathrm{~W} \\ 0 \sim 15 \mathrm{~V} \text { or } 0 \sim 9 \mathrm{~V} \\ 0 \sim 3 \mathrm{~A} \text { or } 0 \sim 5 \mathrm{~A} \\ \text { Rear: } 0 \sim 10 \mathrm{~A}(\text { under } 0 \sim 4.5 \mathrm{~V} \text {) } \\ \hline \end{array}$	Ch 2 36W $0 \sim 12 \mathrm{~V}$ $0 \sim 3.0 \mathrm{~A}$
		$\begin{aligned} & \hline 0.15 \mathrm{~ms}(10 \% \sim 90 \%) \\ & 0.65 \mathrm{~ms}(90 \% \sim 10 \%) \end{aligned}$	$\begin{aligned} & 0.20 \mathrm{~ms}(10 \% \sim 90 \%) \\ & 0.30 \mathrm{~ms}(90 \% \sim 10 \%) \end{aligned}$		$\begin{aligned} & \hline 0.20 \mathrm{~ms}(10 \% \sim 90 \%) \\ & 0.30 \mathrm{~ms}(90 \% \sim 10 \%) \end{aligned}$		$\begin{aligned} & \hline 0.20 \mathrm{~ms}(10 \% \sim 90 \%) \\ & 0.30 \mathrm{~ms}(90 \% \sim 10 \%) \end{aligned}$	
STABILITY	Voltage Current	$\begin{aligned} & 0.01 \%+0.5 \mathrm{mV} \\ & 0.01 \%+50 \mu \mathrm{~A} \end{aligned}$	$0.01 \%+3.0 \mathrm{mV}$		$0.01 \%+3.0 \mathrm{mV}$		$0.01 \%+3.0 \mathrm{mV}$	
REGULATION (CV)	Load Line	$\begin{aligned} & 0.01 \%+2 \mathrm{mV} \\ & 0.5 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.01 \%+2 \mathrm{mV} \\ & 0.5 \mathrm{mV} \end{aligned}$		$\begin{aligned} & 0.01 \%+2 \mathrm{mV} \\ & 0.5 \mathrm{mV} \end{aligned}$		$\begin{aligned} & 0.01 \%+2 \mathrm{mV} \\ & 0.5 \mathrm{mV} \end{aligned}$	
REGULATION (CC)	Load Line	$\begin{aligned} & 0.01 \%+1 \mathrm{~mA} \\ & 0.5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0.01 \%+1 \mathrm{~mA} \\ & 0.5 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.01 \%+1 \mathrm{~mA} \\ & 0.5 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.01 \%+1 \mathrm{~mA} \\ & 0.5 \mathrm{~mA} \end{aligned}$	
RIPPLE \& NOISE (20Hz~20MHz)	CV p-p CV rms CC rms	$\begin{aligned} & 8 \mathrm{mV} \\ & 1 \mathrm{mV} \\ & - \end{aligned}$	$\leqq 5 \mathrm{~A}: 8 \mathrm{mVp}-\mathrm{p}(2 \mathrm{Hzz} \sim 20 \mathrm{MHz})$$3 \mathrm{mV}(0 \sim 1 \mathrm{MHz})$		$\leqq 5 \mathrm{~A}: 8 \mathrm{mVp}-\mathrm{p}(20 \mathrm{~Hz} \sim 20 \mathrm{MHz})$$3 \mathrm{mV}(0 \sim 1 \mathrm{MHz})$		$\leqq 5 \mathrm{~A}: 8 \mathrm{mVp}-\mathrm{p}(20 \mathrm{~Hz} \sim 20 \mathrm{MHz})$ $>5 \mathrm{~A}: 12 \mathrm{mVp}-\mathrm{p}(20 \mathrm{~Hz} \sim 20 \mathrm{MHz})$ $3 \mathrm{mV}(0 \sim 1 \mathrm{MHz})$	
PROGRAMMING ACCURACY	Voltage Current(Ch1:5A,10A/CH2:1.5A,3A) Current $\mathbf{(5 0 0 m A})$ Current (5 mA)	$\begin{aligned} & 0.05 \%+10 \mathrm{mV} \\ & 0.16 \%+5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0.05 \%+10 \mathrm{mV} \\ & 0.16 \%+5 \mathrm{~mA}(5 \mathrm{~A} / 1.5 \mathrm{~A}) \end{aligned}$		$\begin{aligned} & 0.05 \%+10 \mathrm{mV} \\ & 0.16 \%+5 \mathrm{~mA}(5 \mathrm{~A} / 3 \mathrm{~A}) \end{aligned}$		$\begin{aligned} & 0.05 \%+10 \mathrm{mV} \\ & 0.16 \%+5 \mathrm{~mA}(5 \mathrm{~A} / 3 \mathrm{~A}) \end{aligned}$	
		-	$\begin{aligned} & 0.16 \%+0.5 \mathrm{~mA} \\ & 0.16 \%+5 \mu \mathrm{~A} \end{aligned}$	-	$\begin{aligned} & 0.16 \%+0.5 \mathrm{~mA} \\ & 0.16 \%+5 \mu \mathrm{~A} \end{aligned}$	-	$\begin{aligned} & 0.16 \%+0.5 \mathrm{~mA} \\ & 0.16 \%+5 \mu \mathrm{~A} \end{aligned}$	-
READBACK ACCURACY	Voltage Current(Ch1:5A,10A/CH2:1.5A,3A) Current $(500 \mathrm{~mA})$ Current (5mA)	$\begin{aligned} & 0.05 \%+3 \mathrm{mV} \\ & 0.2 \%+400 \mu \mathrm{~A}(5 \mathrm{~A}) \end{aligned}$	$\begin{aligned} & 0.05 \%+3 \mathrm{mV} \\ & 0.2 \%+400 \mu \mathrm{~A}(5 \mathrm{~A}) \end{aligned}$	$\begin{array}{r} 0.05 \%+3 \mathrm{mV} \\ 0.2 \%+400 \mu \mathrm{~A} \end{array}$	$\begin{aligned} & 0.05 \%+3 \mathrm{mV} \\ & 0.2 \%+400 \mu \mathrm{~A}(5 \mathrm{~A}) \end{aligned}$	$\begin{array}{r} 0.05 \%+3 \mathrm{mV} \\ 0.2 \%+400 \mu \mathrm{~A} \end{array}$	$\begin{aligned} & 0.05 \%+3 \mathrm{mV} \\ & 0.2 \%+400 \mu \mathrm{~A}(5 \mathrm{~A}) \end{aligned}$	$\begin{gathered} 0.05 \%+3 \mathrm{mV} \\ 0.2 \%+400 \mu \mathrm{~A} \end{gathered}$
		-	$0.2 \%+100 \mu \mathrm{~A}$	-	$0.2 \%+100 \mu \mathrm{~A}$	-	$0.2 \%+100 \mu \mathrm{~A}$	-
		$0.2 \%+1 \mu \mathrm{~A}$	$0.2 \%+7 \mathrm{~A}$					
RESPONSE TIME	Transient Recovery Time (Response to 1000% Load Change)	$<40 \mu \mathrm{~S}($ within 100 mV) $<80 \mu \mathrm{~S}($ within 20 mV)	$<40 \mu \mathrm{~S}$ (within 100 mV , Rear) $<50 \mu \mathrm{~S}$ (within 100 mV , Front) $<80 \mu \mathrm{~S}$ (within 20 mV)		$<40 \mu \mathrm{~S}$ (within 100 mV , Rear) $<50 \mu \mathrm{~S}$ (within 100 mV , Front) $<80 \mu \mathrm{~S}$ (within 20 mV)		$<40 \mu \mathrm{~S}$ (within 100 mV , Rear) $<50 \mu \mathrm{~S}$ (within 100 mV , Front) $<80 \mu \mathrm{~S}$ (within 20 mV)	
PROGRAMMING RESOLUTION	Voltage Current (5A range) Current (500 mA range) Current (5 mA range)	2.5 mV						
		1.25 mA	$1.25 \mathrm{~mA}(5 \mathrm{~A})$	1.25 mA	$1.25 \mathrm{~mA}(5 \mathrm{~A})$	1.25 mA	$1.25 \mathrm{~mA}(5 \mathrm{~A})$	1.25 mA
		-	$\begin{aligned} & 0.125 \mathrm{~mA} \\ & 1.25 \mu \mathrm{~A} \end{aligned}$	-	$\begin{aligned} & 0.125 \mathrm{~mA} \\ & 125 \mu \mathrm{~A} \end{aligned}$	-	$\begin{aligned} & 0.125 \mathrm{~mA} \\ & 1.25 \mu \mathrm{~A} \end{aligned}$	-
readback resolution	Voltage Current (5A range) Current (500 mA range) Current (5 mA range)	$\begin{aligned} & \hline 1 \mathrm{mV} \\ & 0.1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 1 \mathrm{mV} \\ & 0.1 \mathrm{~mA}(5 \mathrm{~A}) \end{aligned}$	$\begin{gathered} 1 \mathrm{mV} \\ 0.1 \mathrm{~mA}(1.5 \mathrm{~A}) \end{gathered}$	$\begin{aligned} & 1 \mathrm{mV} \\ & 0.1 \mathrm{~mA}(5 \mathrm{~A}) \\ & \hline \end{aligned}$	$\begin{gathered} 1 \mathrm{mV} \\ 0.1 \mathrm{~mA}(3 \mathrm{~A}) \end{gathered}$	$\begin{aligned} & 1 \mathrm{mV} \\ & 0.1 \mathrm{~mA}(5 \mathrm{~A}) \end{aligned}$	$\begin{gathered} 1 \mathrm{mV} \\ 0.1 \mathrm{~mA}(3 \mathrm{~A}) \end{gathered}$
		-	0.01 mA	-	0.01 mA	-	0.01 mA	-
		$0.1 \mu \mathrm{~A}$	$0.1 \mu \mathrm{~A}$	0.14 A	$0.1 \mu \mathrm{~A}$	0.14 A	$0.1 \mu \mathrm{~A}$	0.14 A
PROTECTION FUNCTION	OVP Accuracy OVP Resolution	50 mV	Chl: 0.8 V	Ch2: 50 mV	Ch1: 0.8 V	Ch2: 50 mV	Chl: 0.8 V	Ch2: 50 mV
		10 mV						
DVM	DC Readback Accuracy $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$ Readbck Resolution Input Voltage Range Maximum Input Voltage Input Resistance and Capacitance	$\begin{aligned} & \pm 0.05 \%+3 \mathrm{mV} \\ & 1 \mathrm{mV} \\ & 0 \sim 20 \mathrm{VDC} \\ & -\quad 100000 \mathrm{M} \Omega \end{aligned}$	-	$\begin{gathered} \pm 0.05 \%+3 \mathrm{mV} \\ 1 \mathrm{mV} \\ 0 \sim 20 \mathrm{VDC} \\ -3 \mathrm{~V},+22 \mathrm{~V} \\ 20 \mathrm{M} \Omega \end{gathered}$	-	$\begin{gathered} \pm 0.05 \%+3 \mathrm{mV} \\ 1 \mathrm{mV} \\ 0 \sim 20 \mathrm{VDC} \\ -3 \mathrm{~V},+22 \mathrm{~V} \\ 20 \mathrm{M} \Omega \end{gathered}$	-	$\begin{gathered} \pm 0.05 \%+3 \mathrm{mV} \\ 1 \mathrm{mV} \\ 0 \sim 20 \mathrm{VDC} \\ -3 \mathrm{~V},+22 \mathrm{~V} \\ 2 \mathrm{M} \Omega \end{gathered}$
PROGRAMMABLE OUTPUT RESISTANCE	Range Programming Accuracy Resolution	-	$\begin{aligned} & 0.001 \Omega \sim 1.000 \Omega \\ & 0.5 \%+10 \mathrm{~m} \Omega \\ & 1 \mathrm{~m} \Omega \end{aligned}$	-	$\begin{aligned} & 0.001 \Omega \sim 1.000 \Omega \\ & 0.5 \%+10 \mathrm{~m} \Omega \\ & 1 \mathrm{~m} \Omega \end{aligned}$	-	$\begin{aligned} & 0.001 \Omega \sim 1.000 \Omega \\ & 0.5 \%+10 \mathrm{~m} \Omega \\ & 1 \mathrm{~m} \Omega \end{aligned}$	-
PULSE CURRENT MEASUREMENT	Trigger Level High Time/low Time/ Average Time Trigger Delay Average Readings Long Integration Pulse Time Long Integration Measurement Time Long Integration Trigger Mode	$5 \mathrm{~mA} \sim 5 \mathrm{~A}, 5 \mathrm{~mA} /$ Step $33.3 \mu \mathrm{~s} \sim 833 \mathrm{~ms}$, $33.3 \mu \mathrm{~s} /$ Step $0 \sim 100 \mathrm{~ms}, 10 \mu \mathrm{~s} /$ Steps 1~100 1S~63S $850 \mathrm{~ms}(60 \mathrm{~Hz}) / 840 \mathrm{~ms}$ $(50 \mathrm{~Hz}) \sim 60 \mathrm{~s}$, or Auto time $16.7 \mathrm{~ms} / \operatorname{Steps}(60 \mathrm{~Hz})$, $20 \mathrm{~ms} /$ Steps $(50 \mathrm{~Hz})$ Rising, Falling, Neither	$5 \mathrm{~mA} \sim 5 \mathrm{~A}, 5 \mathrm{~mA} /$ Step $33.3 \mu \mathrm{~s} \sim 833 \mathrm{~ms}$, $33.3 \mu \mathrm{~s} /$ Step $0 \sim 100 \mathrm{~ms}, 10 \mu \mathrm{~s} /$ Steps 1~100 1S~63S $850 \mathrm{~ms}(60 \mathrm{~Hz}) / 840 \mathrm{~ms}$ $(50 \mathrm{~Hz}) \sim 60 \mathrm{~s}$, or Auto time $16.7 \mathrm{~ms} / \mathrm{Steps}(60 \mathrm{~Hz})$, $20 \mathrm{~ms} /$ Steps $(50 \mathrm{~Hz})$ Rising, Falling, Neither		$5 \mathrm{~mA} \sim 5 \mathrm{~A}, 5 \mathrm{~mA} /$ Step $33.3 \mu \mathrm{~s} \sim 833 \mathrm{~ms}$, $33.3 \mu \mathrm{~s} /$ Step $0 \sim 100 \mathrm{~ms}, 10 \mu \mathrm{~s} /$ Steps 1~100 1S~63S $850 \mathrm{~ms}(60 \mathrm{~Hz}) / 840 \mathrm{~ms}$ $(50 \mathrm{~Hz}) \sim 60 \mathrm{~s}$, or Auto time $16.7 \mathrm{~ms} /$ Steps $(60 \mathrm{~Hz})$, $20 \mathrm{~ms} /$ Steps $(50 \mathrm{~Hz})$ Rising, Falling, Neither		$5 \mathrm{~mA} \sim 5 \mathrm{~A}, 5 \mathrm{~mA} /$ Step $33.3 \mu \mathrm{~s} \sim 833 \mathrm{~ms}$, $33.3 \mu \mathrm{~s} /$ Step $0 \sim 100 \mathrm{~ms}, 10 \mu \mathrm{~s} / \mathrm{Steps}$ 1~100 $15 \sim 63 S$ $850 \mathrm{~ms}(60 \mathrm{~Hz}) / 840 \mathrm{~ms}$ $(50 \mathrm{~Hz}) \sim 60 \mathrm{~s}$, or Auto time $16.7 \mathrm{~ms} / \mathrm{Steps}(60 \mathrm{~Hz})$ $20 \mathrm{~ms} /$ Steps $(50 \mathrm{~Hz})$ Rising, Falling, Neither	
OTHERS	Output Terminal DVM Input Relay Control Connector Operation Temperature Operation Humidity Storage Temperature Storage Humidity	Front/Rear Panel	Front/Rear Panel	Rear Panel	Front/Rear Panel	Rear Panel	Front/Rear Panel	Rear Panel
		Front/Rear Panel	-	Front Panel	-	Front Panel	-	Front Panel
		$150 \mathrm{~mA} / 15 \mathrm{~V}, 5 \mathrm{~V}$ output, 100 mA $0 \sim 40^{\circ} \mathrm{C}$ $\leqslant 80 \%$ $-20^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ < 80\%	$150 \mathrm{~mA} / 15 \mathrm{~V}, 5 \mathrm{~V}$ output, 100 mA $0 \sim 40^{\circ} \mathrm{C}$ $\leqslant 80 \%$ $-20^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ < 80\%		$150 \mathrm{~mA} / 15 \mathrm{~V}, 5 \mathrm{~V}$ output, 100 mA $0 \sim 40^{\circ} \mathrm{C}$ $\leqslant 80 \%$ $-20^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ < 80\%		$150 \mathrm{~mA} / 15 \mathrm{~V}, 5 \mathrm{~V}$ output, 100 mA $0 \sim 40^{\circ} \mathrm{C}$ $\leqslant 80 \%$ $-20^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ < 80\%	
PC REMOTE INTERFACES	Standard	CPIB/USB/LAN	CPIB/USB/LAN		GPIB/USB/LAN		GPIB/USB/LAN	
CURRENT SINK CAPACITY	Sink Current Rating	2 A (Vout $\leqq 5 \mathrm{~V}$); 2A-0.1*(Vout-5) (Vout>5V)	Ch1:0~4V:3.5A; 4~15V:3.5A-(0.25A/V) *(Vset-4V)	$\begin{aligned} & \text { Ch2: 0~5V:2A; } \\ & 5 \sim 12 V: 2 \mathrm{~A}-(0.1 \mathrm{~A} / \mathrm{V}) \\ & \text { C(Vset-5V) } \end{aligned}$	$\begin{aligned} & \text { Ch1:0~4V:3.5A; } \\ & 4 \sim 15 V=3.5 \mathrm{~A}-(0.25 \mathrm{~A} / \mathrm{V}) \\ & *(\text { Vseet-4V) } \end{aligned}$	$\begin{aligned} & \text { Ch2:0-5V:3A; } \\ & \text { 5~12V:3A-(0.25A/V) } \\ & \text { (Vset-5V) } \end{aligned}$	Ch1:0~4V:3.5A; 4~15V:3.5A-(0.25A/V) *(Vset-4V)	$\begin{aligned} & \hline \text { Ch2:0-5V:3A; } \\ & \text { 5~ } 12 \mathrm{~V}: 3 \mathrm{AA}-(0.25 \mathrm{~A} / \mathrm{V}) \\ & * \text { (Vset-5V) } \\ & \hline \end{aligned}$
MEMORY	Save/Recall	5 Sets	5 Sets		5 Sets		5 Sets	
POWER	Input Power Power Consumption	$\begin{aligned} & 90 \sim 264 \mathrm{VAC} ; 50 / 60 \mathrm{~Hz} \\ & 150 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 90 \sim 264 \mathrm{VAC} ; 50 / 60 \mathrm{~Hz} \\ & 160 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 90 \sim 264 \mathrm{VAC} ; 50 / 60 \mathrm{~Hz} \\ & 160 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 90 \sim 264 \mathrm{VAC} ; 50 / 60 \mathrm{~Hz} \\ & 160 \mathrm{~W} \end{aligned}$	
DIMENSIONS \& WEIGHT		222 (W) $\times 86$ (H) $\times 363$ (D) mm; Approx 4.2kg	$222(W) \times 86(H) \times 363(D)$ mm; Approx 4.5 kg		$\begin{aligned} & 222(\mathrm{~W}) \times 86(\mathrm{H}) \times 363(\mathrm{D}) \\ & \mathrm{mm} ; \text { Approx } 4.5 \mathrm{~kg} \end{aligned}$		222(W) $\times 86$ (H) $\times 363$ (D) mm; Approx 4.5 kg	

ORDERING INFORMATION

PPH-1503 (0~15V/0~3A or 0~9V/0~5A)High Precision DC Power Supply
PPH-1503D (CH1:0~15V/0~3A or 0~9V/0~5A;CH2:0~12V/0~1.5A)High Precision Dual Channel Output DC Power Supply PPH-1506D (CH1:0~15V/0~3A or 0~9V/0~5A;CH2:0~12V/0~3A)High Precision Dual Channel Output DC Power Supply PPH-1510D (CH1:0~15V/0~3A or 0~9V/0~5A,0~4.5V/0~10A(Rear terminal);CH2:0~12V/0~3A)High Precision Dual Channel Output DC Power Supply

ACCESSORIES

CD (User manual x1, Quick start manual x1), Power cord (Region dependent), Test lead GTL-207A x 1, GTL-203A x 1, GTL-204A x 1

OPTIONAL ASSESSORIES

GTL-246 USB Cable (USB 2.0, A-B Type)

GOOD WILL INSTRUMENT CO., LTD.
No.7-1, Jhongsing Road, Tucheng Dist., New Taipei City 236, Taiwan T +886-2-2268-0389 F + 886-2-2268-0639
E-mail: marketing@goodwill.com.tw

ШIחSTEK
Simply Reliable

