

Power Measuring Instruments

Record and Analyze Power Supply Problems Simultaneously with a Single Unit The New World Standard for Power Quality Analysis

Never Miss the Moment

- Detect power supply problems and perform onsite troubleshooting
- Do preventive maintenance to avert accidents by managing the power quality

CAT IV-600V Safety Standard

- Meets the CAT IV safety rating required to check an incoming power line
- Safe enough to measure up to 6,000Vpeak of transient overvoltage

Easy Setup Function with PRESETS

- Just select the measurement course, wiring, and clamps
- Automatic one-step setup based on measurement conditions

Compliant with New International Standards

- International power quality measurement standard IEC 61000-4-30 Edition 2 Class A
- High precision with a basic voltage measurement accuracy of 0.1%

ISO 9001 ISO14001 JQA-E-90091 JMI-0216

and other information are available on our website

One Single Unit Can Solve All Your Power Supply Problems

The number of power supply problems is increasing as power systems are becoming more and more complicated all due to the rising use of power electronics devices plus a growing installed base of large systems and distributed power supplies. The quickest way to approach these problems is to understand the situation quickly and accurately. The PW3198 Power Quality Analyzer is ready to effectively solve your power supply problems.

Troubleshooting

- Understand the actual power situation at the site where the problem is occurring (e.g., the equipment malfunction, failure, reset, overheating, or burning damage).
- Ideal for troubleshooting solar and wind power generation systems, EV charge stations, smart grids, tooling machines, OA equipment (e.g., computers, printers, and UPS), medical equipment, server rooms, and electrical equipment (e.g., transformers and phase-advancing capacitors).

Field Survey and Preventive Maintenance

- Perform long-term measurements of the power quality and study problems that are difficult to detect or that occur intermittently.
- ✓ Maintain electrical equipment and check the operation of solar and wind power generation systems.
- Manage the parameters with a control set point, such as a voltage fluctuation, flicker, and harmonic voltage.

Power (Load) Survey

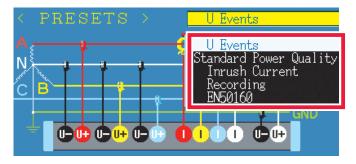
✓ Study the power consumption and confirm system capacity before adding load.

Advanced Features for Safe, Simple, and Accurate Measurements

International Standard IEC61000-4-30 Edition 2 Class A

Class A is defined in the international standard IEC61000-4-30, which specifies compatibility with power quality parameters, accuracy, and standards to enable comparison and discussion of the measurement results of different measuring instruments.

The PW3198 is compliant with the latest IEC61000-4-30 Edition 2 Class A standard. The instrument can perform measurements in accordance with the standard, including continuous gapless calculation, methods to detect events such as dip, swell, and instantaneous power failure, and time synchronization using the optional GPS box.


CAT IV-600V Safety

The PW3198 is compliant with the measurement category CAT IV - 600V and can also safely test the incoming lines for both single-phase and three-phase power supplies.

3

Easy to set up - Just select the measurement course and the PW3198 will do the rest

Simply choose the course based on the measurement objective and the necessary configurations will be set automatically.

U Events	Record voltage and frequency and detect errors simultaneously.
Standard Power Quality	Record voltage, current, frequency, and harmonic, and detect errors simultaneously.
Inrush current	Measure the inrush current.
Recording	Record only the TIME PLOT Data but do not detect errors.
EN50160	Perform measurements in accordance with EN50160.

4

Highly Accurate, Broadband, Wide Dynamic Range Makes for Reliable Measurements

DC

Voltage Frequency Range

Harmonic measurement

High-order harmonic measurement

3kHz

Wide range from DC voltage to 700 kHz

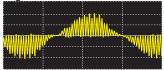
Voltage Measurement Range

		Tra	nsient overvoltag
	Line-to-line	voltage (3P4W)	
Line-to-line voltage(1P2W, 1P Phase voltage (1P2W, 1P			
	780V	1300V	6000Vpe
	14 I-		

Both low and high voltages can be measured in a single range.

Basic Measurement Accuracy (50/60 Hz)

Voltage	±0.1% of nominal voltage
Current	$\pm 0.2\%$ rdg. $\pm 0.1\%$ f.s. + Clamp-on sensor accuracy
Power	±0.2% rdg. ±0.1% f.s. + Clamp-on sensor accuracy


World's highest level of basic measurement accuracy. Extremely accurate voltage measurement without the need to switch ranges.

Transient Overvoltage

Transient overvoltage can also be measured in a range between the maximum 6,000 V and minimum 1 μs (2 MS/s).

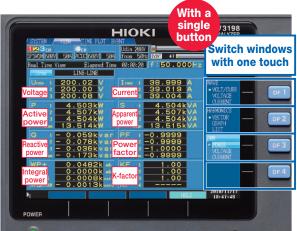
High-order Harmonic

80kHz

Transient overvoltage detection

Waveform example

700kHz


The PW3198 is the first power quality analyzer that can measure the high-order harmonic component of up to 80 kHz.

PW3198 Never Misses the Moment a Power Supply Failure Occurs

The PW3198 can measure all waveforms of power, harmonic, and error events simultaneously. When a problem occurs with the equipment or system on your site, the PW3198 will help you detect the cause of the problem early and solve it quickly. You can depend on the PW3198 to monitor all aspects of your power supplies.

Measure All Parameters at the Same Time

Acquire the Information You Need Quickly by Switching Pages (RMS Value) Just connect to the measurement line, and the PW3198 will simultaneously measure all parameters, such as power and harmonic. You can then switch pages to view the needed information immediately.

DMM Display

Display parameters such as voltage, current, power, power factor, and integral power in a single window.

Waveform Display

Display the voltage and current waveforms on channels 1 to 4 one above the other in a single window.

4-channel Waveform Display Display the voltage and current waveforms on channels 1 to 4 individually.

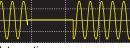
Vector Display

Display the measured value and vector of the voltage and current of each order harmonic.

Harmonic Bar Graph Display Display the RMS value and phase angle of harmonics from the 0th order to the 50th either in a graph or as numerical values.

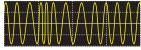
Reliably Detect Power Supply Failures (Event)

To detect power supply failures, measurement does not need to be performed multiple times under different conditions. The PW3198 can always monitor and reliably detect all power supply failures for which detection is enabled.

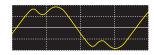


Transient Overvoltage (Impulse)

A transient overvoltage is generated by a lightning strike or a contact fault or closed contact of a circuit breaker and relay, and often causes a steep voltage change and a high voltage peak.


Voltage Dip (Voltage Drop)

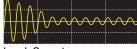
Voltage drops for a short time as a result of large inrush current generated in the load by, for example, a starting motor.


Interruption

The power supply stops instantaneously or for a short or long time because electrical power transmission is stopped as a result of a lightning strike, or because the circuit breaker is tripped by a power supply short circuit.

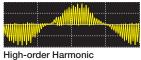
Frequency Fluctuations

An excessive increase or decrease of the load causes the operation of a generator to become unstable, resulting in frequency fluctuations.


Harmonic

Harmonic is generated by a semiconductor control device installed in the power supply of equipment, causing distortion of voltage and current waveforms.

1			۸.		۸.	1	. <u>.</u>										۸.	1.	^		Å		À	j
1	Ν		$^{\prime}$		$^{\prime}$		Π										Ν		N		$^{\prime}$		IN	
1		_		-	Ц	÷	H	-	_		_	÷	_	-	-	-	-	÷	_	-				ł
1		V		\setminus			Â	V										V		V		V		۱
1		v		v		۷		v		H				17		17		٧		v		٧		١
1										V		V		V		V								


Voltage Swell (Voltage Rise)

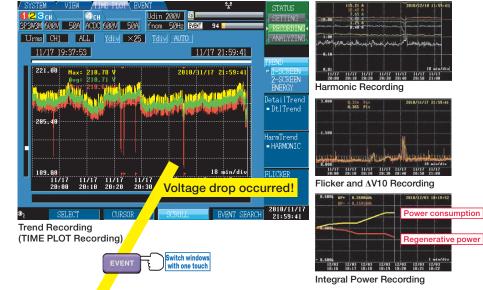
A voltage swell is generated by a lightning strike or a heavily loaded power line being opened or closed, causing the voltage to rise instantaneously.

Inrush Current

A large current flows instantaneously at the moment electrical equipment, a motor, or similar devices are powered on.

nigh order namonie

Voltage and current waveforms are distorted by noise components generated by a semiconductor control device or the like installed in the power supply of electronic equipment.


An increase or decrease in the load connected to each phase of the three-phase power supply or an unbalanced operation of equipment and devices causes the load of a particular phase to become heavy so that voltage and current waveforms are distorted, voltage drops, or negative phase sequence voltage is generated.

Simultaneous Recording of TIME PLOT Data and Event Waveforms

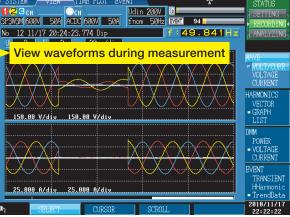
TIME PLOT Data

TIME PLOT Recording of All Parameters

The PW3198 can simultaneously record 8,000 or more parameters, such as voltage, current, power, power factor, frequency, integral power, harmonic, and flicker, at the specified recording interval. The PW3198 never fails to capture the peak because it performs calculations continuously and records the maximum, minimum, and average values within the recording interval.

Event Waveforms Capture up to 55,000 Instantaneous Waveforms of Power Supply Failures

The PW3198 can record up to 1,000 instantaneous waveforms of power supply failures (up to 55,000 when repeat recording is set to ON) while performing TIME PLOT recording.



This list records instantaneous waveforms of power supply failures

(events), such as a voltage drop or inrush current, along with the time

or other information. Events are always monitored, regardless of the

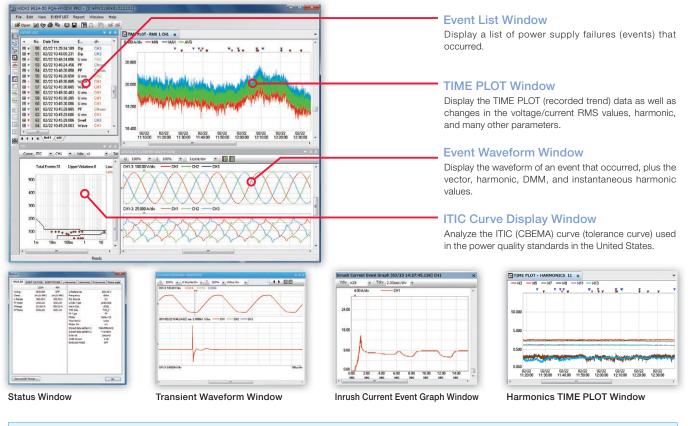
recording interval of the TIME PLOT recording.

Event Waveform

The PW3198 lets you view the instantaneous waveform (200 ms) of a power supply failure in the window.

Inrush cu	Irrent occu	irs	RM
			ove
k			Wh
\mathbb{N}			inrı
			RM
· .	÷		are
a dran agu		h ourront	sec
e urop cau			Thi
1/			be
V			
			volt
			inru
			bv t
		e drop caused by inrus	Inrush current occurs

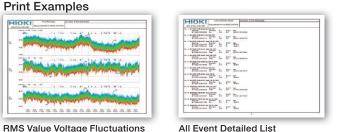
MS value changes ver 30 seconds


Ahen a voltage drop or rush current occurs, MS value changes re recorded over 30 aconds simultaneously. his function can also e used to check the bitage drop caused by rush current generated the start of the motor.

30 seconds

Use Model 9624-50 PQA-HiVIEW PRO (version 2.00 or later) with a PC to analyze the data collected by the PW3198.

Viewer Function


Display and analyze the data recorded by the PW3198 POWER QUALITY ANALYZER.

Report Creation Function

Automatically and effortlessly create rich reports for compliance and record management. Report output items: Voltage/current RMS value fluctuation graph, harmonic fluctuation graph, inter-harmonics fluctuation graph, flicker graph, integral power graph, demand graph, total harmonic voltage/current distortion rate list, EN50160 window (Overview, Harmonic, Measurement Results Category), worst case, transient waveform,

Drivet Excernation

maximum/minimum value list, all event waveforms/detailed list, and setup list

TIME PLOT Recording of Parameters

Other Functions

Download Measurement Data via USB/LAN

Data in the SD card inserted in the PW3198 can be downloaded to a PC via USB or LAN.

EN50160

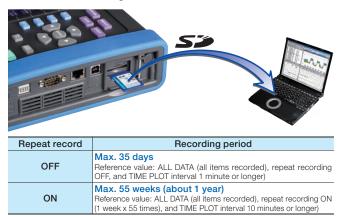
EN50160 Display Function

EN50160 is a power quality standard for the EU. In this mode, evaluate and analyze power quality in accordance with the standard. You can display the Overview, Harmonic, and Measurement Results Category windows.

9624-50 Specifications

ool opoollioulio	
Delivery media	CD-R
Operating environment	AT-compatible PC
	WindowsXP, WindowsVista(32-bit), Windows7(32/64-bit)
Memory	512 MB or more

CSV Conversion of Measurement Data


Convert data in the range specified in the TIME PLOT window into CSV format and then save for further processing. The 9624-50 can also convert event waveforms into CSV format. Open CSV data using any commercially available spreadsheet software for advanced data management and analysis.

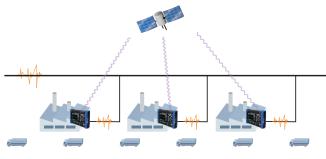
Even Analyze Data Recorded with Models 3196 and 3197 PQAs Data recorded with the HIOKI 3196 and 3197 Power Quality Analyzers can also be analyzed

Large Capacity Recording with SD Card

Data is recorded to a large capacity SD card. The data can be transferred to a PC and analyzed using dedicated application software. If your PC is not equipped with an SD card slot, simply connect a USB cable between the PW3198 and the PC. The PC will then recognize the SD card as removable media.

Remote Measurement Using HTTP Server Function

You can use any Internet browser to remotely operate the PW3198, plus download the data stored in the SD card using dedicated software (LAN access required).



Conduct off-site remote control with a tablet PC using a wireless LAN router

GPS Time Synchronization

The PW9005 GPS BOX lets you synchronize the clock on the PW3198 to the UTC standard time. Eliminate time differences between multiple PQAs and correctly analyze measurement data taken by several instruments.

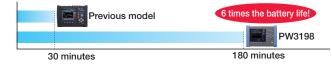
Simultaneously Measure Three-phase Lines and Grounding Wire

Apart from the main measurement line, you can also measure the AC/DC voltage on another line using Channel 4.

Yes! Simultaneously!

- •Measure the primary and secondary sides of UPS
- •Two-line voltage analysis
- •Measure three-phase lines and grounding wire
- Measure neutral lines to detect short circuits

Measure the input and output of a DC-AC converter for solar power generation


An Assortment of Clamp-on Sensors Covers a Broad Range of Measurements

Model 9694 (5A) sensor has been added to the existing CLAMP ON SENSOR offerings: Models 9660 (100A), 9661 (500A), 9669 (1000A), and 9667 (5000A). You can also use a 9657-10 or 9675 CLAMP ON LEAK SENSOR to measure leak-age currents in the milliampere range.

Backup and Recovery from Power Failure

The PW3198 uses the new large capacity BATTERY PACK Z1003, enabling continuous measurement for three hours even if a power failure occurs. In addition, a power failure processing function restarts measurement automatically even if the power is cut off completely during measurement.

Other Measurement Applications

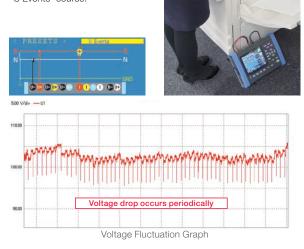
Flicker measurement

Measure flicker in conformance with IEC 61000-4-15 Ed2. Phase voltage check for Δ connection

Use the $\Delta\text{-}Y$ and Y- Δ conversion function to measure phase voltage using a virtual neutral point.

400 Hz line measurement

Measure at a power line frequency of 50/60 Hz as well as 400 Hz.



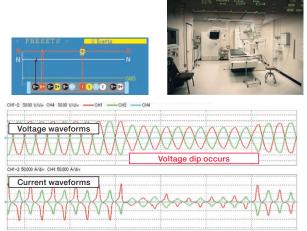
Power Quality Survey Applications

The power supply of the office equipment sometimes shuts down

Survey Objective The power supply of a printer at the office shuts down even though it is not operated. Equipment other than the printer can also sometimes perform a reset unexpectedly.

Reasurement Method Setup is very easy. Just install the PW3198 on the site, and measure the voltage, current, and power. To troubleshoot, just select the clamp-on sensor and wiring, and then select the "U Events" course.

nalysis Report


A No failure occurred during the measurement period, but a periodic voltage drop was confirmed. The voltage drop may have been caused by the periodic start and operation of the electrical equipment connected to the power supply line. Equipment, such as a laser printer, copier, and electrical heater, may start themselves periodically due to residual heat. An instantaneous voltage drop is likely to have been caused by inrush current from equipment that consumes a large amount of power.

Medical equipment malfunctions

Survey Objective Replacing the equipment with a new one by the service provider did not improve the malfunction. A survey of the power supply was required to clarify the cause.

Measurement Method Select the "U Events" course in the PW3198 in the same way as with the office equipment example.

Voltage and Current Waveforms at the Time Voltage Dip Occurs

nalysis Report

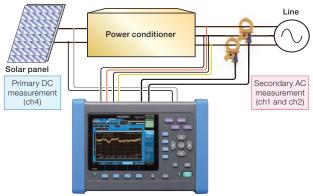
A It was determined that a voltage dip (voltage drop) occurred and impacted the operation of the equipment. If a voltage dip occurs every day on a regular basis, the probable cause is the start of a large air-conditioning unit, pump, heater, or similar equipment.

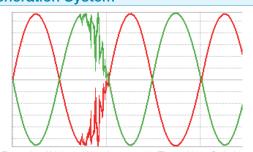
Surveying a Solar Power Generation System

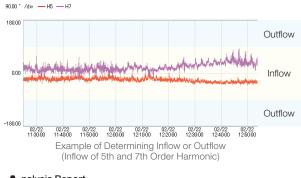
Survey Objective

 Maintain a solar power generation system and check its operation (verify the power guality) Troubleshoot (impact on the peripheral equipment, operation shutdown, etc.)

easurement Method


Set up the PW3198 on the site and measure the voltage, current, and power. To survey the power quality, select the "Standard power quality measurement" course in the PRESETS menu. To measure the DC voltage, connect


channel 4 to the primary side of the solar panel.


Connection Example

H ()-

Example of Voltage Waveforms at the Time of Line Switching

- Analysis Report All parameters can be recorded simultaneously with a single measurement.
- Identify changes in the output voltage of the power conditioner
- · Presence or absence of the occurrence of a transient overvoltage
- · Frequency fluctuation important for system interconnection
- · Identify changes in the harmonic voltage and current included in the output
- · Power, integral power, etc.

PW3198 Specifications

Measurement items

Voltage measurement items (TIME PLOT Recording)	RMS voltage Frequency Voltage DC Harmonic voltage (0 to 50th order) Inter-harmonic voltage (0.5 to 49.5th) Total harmonic voltage distortion factor	Waveform voltage peak Frequency (1 cycle, 10-sec) IEC Flicker (Pst, Plt) Harmonic voltage phase angle (0 to 50th) High order harmonic voltage component Voltage Unbalance factor (Zero-phase /Negative-phase)
Current measurement items (TIME PLOT Recording)	RMS current Waveform current peak Harmonic current phase angle (0 to 50th) Harmonic current (0 to 50th) Inter-harmonic current (0.5 to 49.5th)	High order harmonic current component Total harmonic current distortion factor Current Unbalance factor (Zero-phase /Negative-phase) K factor Current DC (with release of new clamp-on sensor)
Power measurement items (TIME PLOT Recording)	Active power Reactive power Apparent power Power factor	Harmonic power (0 to 50th) Harmonic voltage-current phase angle (0 to 50th) Active energy Reactive energy
EVENT measurement items (EVENT Recording)	Transient overvoltage Voltage swell Voltage dip Interruption Inrush current	Frequency fluctuations Voltage waveform comparison Timer External events
	age, current and power measure	lower thresholds available with other volt- ement parameters (excluding Integrated Harmonic phase angle, IEC Flicker)

(Accuracy guaranteed for one year)

Input specifications

Measurement circuits	ph: plu	ngle-phase 2-wire (1P2W), single-phase ase 3-wire (3P3W2M, 3P4W2.5E) or thre is one extra input channel (must be syn annel during AC/DC measurement)	e-phase 4-v	vire (3P4W)
Fundamental frequency of measurement circuit	50	Hz, 60Hz, 400Hz		
Input channels	Vo	tage: 4 channels (U1 to U4), Current: 4 cha	annels (I1 to	14)
Input methods	U1,	tage: Isolated and differential inputs (chanr U2 and U3; channels isolated between U1 to rrent: Insulated clamp-on sensors (voltage	o U3 and U4)	
Measurement	Vo	tage measurement ranges		
ranges		Voltage measurement items	Ran	ges
(Ch1 to Ch4 can be configured the		Voltage measurement	600.00)V rms
same way; only CH4		Transient measurement	6.0000	<v peak<="" td=""></v>
can be configured	Cu	rrent measurement ranges (Using clamp-o	n sensors)	
separately)		Using clamp-on sensors	Ran	ges
		9694	5.0000A /	50.000A
		9660	50.000A /	100.00A
		9661	50.000A /	500.00A
		9667	50.000A /	500.00A
		(range switchable also at sensor)	500.00A /	5.0000kA
		9669	100.00A /	1.0000kA
		9695-02	5.0000A /	50.000A
		9695-03	50.000A /	100.00A
		9657-10	500.00mA /	5.0000A
		9675	500.00mA /	/ 5.0000A
	Cu	rrent measurement ranges (automatically configured based on voltage	e and currer	it range)
		Voltage measurement range		
		Current measurement range	600.	.00V
		500.00mA	300.	W00
		5.0000A	3.000	00kW
		50.000A	30.00	00kW
		100.00A	60.00	00kW
		500.00A	300.0	00kW
		1.0000kA	600.0	00kW
		5.0000kA	3.000	OMW

Basic specifications

Maximum recording period	55 weeks (with repeated recording set to [1 Week], 55 iterations) 55 days (with repeated recording set to [1 Day], 55 iterations) 35 days (with repeated recording set to [OFF])
Maximum recordable events	55,000 events (with repeated recording on) 1000 events (with repeated recording off)
TIME PLOT data settings	TIME PLOT interval (MAX/MIN/AVG within each interval recorded) 1s, 3s, 15s, 30s, 1m, 5m, 10m, 15m, 30m,1h, 2h, 150 cycle (at 50Hz), 180 cycle (at 60Hz), 1200 cycle (at 400Hz) Screen copy interval (screen shot at each interval saved to SD card) OFF, 5m, 10m, 30m, 1h, 2h Timer EVENT interval (200ms instantaneous waveform saved at each interval) OFF; 1m, 5m, 10m, 30m, 1h, 2h Time start and End OFF: Start recording manually ON: Start time and End time can be configured Repeated recording settings (maximum 55 iterations) OFF: Recording is not repeated 1Week: 55 weeks maximum in 1week segmentations 1Day: 55 days maximum in 1day segmentations Repeat time Daily Start time and End time can be configured when Repeated recording set to 1Day.
Recording items settings	Power (Small): Recording basic parameters P&Harm (Normal): Recording basic parameters and harmonics All Data (Full): Recording P&Harm items and inter-harmonics
Memory data capacity	2GB SD memory card

PRESETS function	U Events
	Record and monitor voltage elements and frequency, plus detect events
	Standard Power Quality
	Record and monitor voltage and current elements, frequency, and harmonics, plus detect events
	Inrush Current
	Measure inrush current (basic voltage measurement required) Recording
	Record only trend data, no event detection
	Measure according to EN50160 standards
Real-Time Clock function	Auto-calendar, leap-year correcting 24-hour clock
Real-time clock accuracy	±0.3 s per day (with instrument on, 23°C±5°C (73°F±9°F)
Power supply	AC ADAPTER Z1002 (12 VDC, Rated power supply 100VAC to 240VAC, 50/60Hz) BATTERY PACK Z1003 (Ni-MH 7.2VDC 4500 mAh)
Maximum rated power	15VA (when not charging), 35VA (when charging)
Continuous battery operation time	Approx. 180 min. [@23°C (@73.4°F), when using BATTERY PACK Z1003]
Recharge function	BATTERY PACK Z1003 charges regardless of whether the instru- ment is on or off; charge time: max. 5 hr. 30 min. @23°C (@73.4°F)
Power outage processing	In the event of a power outage during recording, instrument resumes recording once the power is back on (integral power starts from 0).
Power supply quality	IEC61000-4-30 Ed.2 :2008
measurement method	
	EN50160 (using Model PQA-HiVIEW PRO 9624-50)
Dimensions	Approx. 300 W× 211 H × 68 D mm (11.81" W × 8.31" H × 2.68" D) (excluding protrusions)
Mass	Approx. 2.6 kg (91.7 oz.) (including battery pack)
Accessories	Instruction manual, Measurement guide, L1000 VOLTAGE CORE (8 cords, approx. 3 m each: 1 each red, yellow, blue, and gray plus 4 black; 8 alligator clips: 1 each red, yellow, blue, and gray plus 4 black), Spiral Tube, Input Cable Labels (for identifying channel o voltage cords and clamp-on sensors), Z1002 AC ADAPTER, Strap USB cable (1 m length), Z1003 BATTERY PACK, Z4001 SD MEM- ORY CARD 2GB

Display specifications

External Interface Specifications

SD card Interface	Saving of binary data, s Loading screen copies	Saving and Loading setting files, Saving and		
	Slot:	SD standard compliant		
	Compatible card:	SD memory card/ SDHC memory card		
	Supported memory capacity			
	Media full processing:	Saving of data to SD memory card is stopped		
RS-232C Interface	Measurement and control using GPS-synchronized time (connecting GPS BC Connector: D-sub9pin Connection destination: GPS box (cannot be connected to computer)			
LAN Interface	later, Remote operation control functions, system displaying event waveform	on (compatible software: Internet Explorer Ver.6 application function, measurement start and si configuration function, event list function (capable ns, event vectors, and event harmonic bar graphs) in the SD memory card using the 9624-50 PQA-HiView I RJ-45 10BASE-T,100BASE-TX		
USB2.0 Interface	The instrument cannot be connormal. 2. Download data from the The instrument cannot be connor Connector:	ry card as a removable disk when connected to a compu- lected during recording (including standby operation) or analy s SD memory card using the 9624-50 PQA-HiView h lected during recording (including standby operation) or analy Series B receptacle n: Computer [WindowsXP, WindowsVista(32bit Windows7 (32/64bit)]		
External control interface	Connector: External event input:	4-pin screwless terminal block		
Interface	External event output:	External event input at TTL low level (at fallin edge of 1.0 V or less and when shorted) between GND terminal and EVENT IN termin Min. pulse width: 30 ms; rated voltage: -0.5 V to +6.0		
	External event output:	edge of 1.0 V or less and when shorted) between GND terminal and EVENT IN termin Min. pulse width: 30 ms; rated voltage: -0.5 V to +6.0		
into ridoo		edge of 1.0 V or less and when shorted) between GND terminal and EVENT IN termin Min. pulse width: 30 ms; rated voltage: -0.5 V to +6.0		
interface	External event output item	edge of 1.0 V or less and when shorted) between GND terminal and EVENT IN termin Min. pulse width: 30 ms; rated voltage: -0.5 V to +6.0 n setting Operation TTL low output at event generation		

Environment and safety specifications

Operating environment	Indoors, altitude up to 3000 m (measurement category is lowered to 600 V CAT III when above 2000m), Pollution degree 2
Storage temperature and humidity	-20 to 50°C (-4 to 122°F) 80% RH or less (non-condensating) (If the instrument will not be used for an extended period of time, remove the battery pack and store in a cool location [from -20 to 30°C (-4 to 86°F)].)
Operating tempera- ture and humidity	0 to 50°C (32 to 122°F) 80% RH or less (non-condensating)
Dust and water resistance	IP30 (EN60529)
Maximum input voltage	Voltage input section 1000 VAC, DC±600 V, max. peak voltage ±6000 Vpk
Maximum rated voltage to earth	Voltage input terminal 600 V (Measurement Categories IV, anticipated transient overvoltage 8000 V)
Dielectric strength	6.88 kVrms (@50/60 Hz, 1 mA sense current): Between voltage measurement terminals (U1 to U3) and voltage measurement terminals (U4) 4.30 kVrms (1 mA@50/60 Hz, 1 mA sense current): Between voltage input terminal (U1 to U3) and current input terminals/interfaces Between voltage (U4) and current measurement terminals, and interfaces
Applicable standards	Safety EN61010 EMC EN61326 Class A, EN61000-3-2, EN61000-3-3

Measurement Specifications

(For specifications when measuring 400Hz circuits, please inquire with your HIOKI distributor.)	
TIME PLOT : The MAX/MIN/AVG of each recording interval for each parameter are recorded.	
EVENT :When a power anomaly occurs, the 200ms instantaneous waveform is recorded.	
TRANSIENT : When a transient overvoltage is detected, the 2ms instantaneous waveforms before and after the occurrence are recorded.	
FLUCTUATION :The RMS fluctuation 0.5s before and 29.5s after an event has occurred are recorded.	

FLUCTUATION :The	RMS fluctuation 0.5s before and 29.5s after an event has occurred are record
HIGH-ORDER HARM :Whe	n a high order harmonic event occurs, the 40ms instantaneous waveform is recorde
Transient overvo	
Display items	For single transient incidents and continuous transient incidents
	Transient voltage value, Transient width For continuous transient incidents Transient period (Period from transient IN to transient OUT) Max. transient voltage value (Max. peak value during the period)
	Transient count during period
Measurement method	Detected from waveform obtained by eliminating the fundamental component (50/60/400 Hz) from the sampled waveform
Sampling frequency	2MHz
	±6.0000kVpeak, 0.0001kV
	5 kHz (-3dB) to 700 kHz (-3dB)
Min. detection width	
Measurement accuracy	±5.0% rdg.±1.0%f.s.
-	current refreshed each half-cycle TIME PLOT EVENT
Measurement method	RMS voltage refreshed each half-cycle: True RMS type, RMS voltage values are calculated using sample data for 1 waveform derived by overlapping the voltage waveform every half-cycle RMS current refreshed each half-cycle: RMS current is calculated using current waveform data sampled every half-cycle
Sampling frequency	200kHz
Measurement range, resolution	RMS voltage refreshed each half-cycle: 600.00V, 0.01V RMS current refreshed each half-cycle: Based on clamp-on sensor in use; see Input specifications
Measurement accuracy	RMS voltage refreshed each half-cycle: ±0.2% of nominal voltage (With 1.66% f.s. to 110% f.s. input and a nominal input voltage of at least 100 V) ±0.2% rdg.±0.08% f.s. (With input outside the range of 1.666% f.s. to 110% f.s. or a nominal input voltage of less than 100 V) RMS current refreshed each half-cycle:
	±0.3% rdg.±0.5% f.s. + clamp-on sensor accuracy
Swell/ Dip/ Interr	ruption (FLUCTUATION) EVENT
Display item	Swell: Swell height, Swell duration
	Dip: Dip depth, Dip duration
	Interruption: Interruption depth, Interruption duration
Measurement	
Measurement method	Swell: A swell is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the positive direction Dip: A dip is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction Interruption: An interruption is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction
	Swell: A swell is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the positive direction Dip: A dip is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction Interruption: An interruption is detected when the RMS voltage refreshed
method Range and accuracy	Swell: A swell is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the positive direction Dip: A dip is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction Interruption: An interruption is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction
method Range and accuracy	Swell: A swell is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the positive direction Dip: A dip is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction Interruption: An interruption is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction See RMS voltage refreshed each half-cycle See RMS voltage refreshed each half-cycle
method Range and accuracy Inrush current	Swell: A swell is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the positive direction Dip: A dip is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction Interruption: An interruption is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction See RMS voltage refreshed each half-cycle Event FLUCTUATION EVENT
method Range and accuracy Inrush current Display item Measurement	Swell: A swell is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the positive direction Dip: A dip is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction Interruption: An interruption is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction See RMS voltage refreshed each half-cycle EVENT FLUCTUATION EVENT Maximum current of RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle
method Range and accuracy Inrush current Display item Measurement method Range and accuracy	Swell: A swell is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the positive direction Dip: A dip is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction Interruption: An interruption is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction See RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction EVENT Maximum current of RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle exceeds the threshold in a positive direction See RMS current refreshed each 1/2 cycle EVENT
method Range and accuracy Inrush current Display item Measurement method Range and accuracy	Swell: A swell is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the positive direction Dip: A dip is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction Interruption: An interruption is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction See RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction EVENT Maximum current of RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle exceeds the threshold in a positive direction See RMS current refreshed each 1/2 cycle EVENT
method Range and accuracy Inrush current Display item Measurement method Range and accuracy RMS voltage, RM	Swell: A swell is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the positive direction Dip: A dip is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction Interruption: An interruption is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction See RMS voltage refreshed each half-cycle EVENT Maximum current of RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle EVENT Maximum current of RMS current refreshed each 1/2 cycle EVENT Maximum current of RMS current refreshed each 1/2 cycle EVENT RMS voltage: TIME PLOT EVENT RMS voltage for each channel and AVG (average) RMS voltage for multiple channels RMS current: RMS voltage for multiple channels
method Range and accuracy Inrush current Display item Measurement method Range and accuracy RMS voltage, RM Display items Measurement	Swell: A swell is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the positive direction Dip: A dip is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction Interruption: An interruption is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction See RMS voltage refreshed each half-cycle EVENT Maximum current of RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle exceeds the threshold in a positive direction See RMS current refreshed each half-cycle Scurrent TIME PLOT EVENT RMS voltage for each channel and AVG (average) RMS voltage for multiple channels RMS current for each channel and AVG (average) RMS current for multiple channels RMS current DF exert DC value: with release of new clamp-on sensor) AC+DC True RMS type (Current DC value: with release of new clamp-on sensor)
method Range and accuracy Inrush current Display item Measurement method Range and accuracy RMS voltage, RM Display items Measurement method Sampling frequency Measurement range, resolution	Swell: A swell is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the positive direction Dip: A dip is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction Interruption: An interruption is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction See RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction EVENT Maximum current of RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle EVENT Maximum current of RMS current refreshed each 1/2 cycle EVENT Maximum current refreshed each half-cycle EVENT Maximum current refreshed each half-cycle EVENT RMS voltage: RMS voltage for multiple channels RMS voltage: RMS current: RMS current: RMS current for each channel and AVG (average) RMS voltage for multiple channels RMS current: RMS current DC value: with release of new clamp-on sensor) RMS voltage: 600.00V, 0.01V RMS voltage: 600.00V, 0.01V RMS vortage: 600.00V, 0.01V
method Range and accuracy Inrush current Display item Measurement method Range and accuracy RMS voltage, RM Display items Measurement method Sampling frequency Measurement range,	Swell: A swell is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the positive direction Dip: A dip is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction Interruption: An interruption is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction See RMS voltage refreshed each half-cycle EVENT Maximum current of RMS current refreshed each 1/2 cycle Detected when the RMS voltage refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle EVENT Maximum current of RMS current refreshed each 1/2 cycle exceeds the threshold in a positive direction See RMS current See RMS current refreshed each half-cycle Image: Time RMS voltage for multiple channels RMS voltage: RMS voltage for each channel and AVG (average) RMS current for multiple channels RMS voltage for each channel and AVG (average) RMS current for multiple channels AC+DC True RMS type (Current DC value: with release of new clamp-on sensor) RMS voltage: 600.00V, 0.01V RMS voltage: Thue RMS voltage for nominal voltage (Mith 1.666% f.s. ot 10% f.s. non sensor in use; see Input specifications RMS voltage: 0.1% rdg.: of nominal voltage (Mith 1.666% f.s. ot 10% f.s. non se
method Range and accuracy Inrush current Display item Measurement method Range and accuracy RMS voltage, RM Display items Measurement method Sampling frequency Measurement range, resolution Measurement	Swell: A swell is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the positive direction Dip: A dip is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction Interruption: An interruption is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction See RMS voltage refreshed each half-cycle EVENT Maximum current of RMS current refreshed each 1/2 cycle Detected when the RMS voltage refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle EVENT Maximum current of RMS current refreshed each 1/2 cycle exceeds the threshold in a positive direction See RMS current See RMS current refreshed each half-cycle Image: Imag
method Range and accuracy Inrush current Display item Measurement method Range and accuracy RMS voltage, RM Display items Measurement method Sampling frequency Measurement range, resolution Measurement accuracy	Swell: A swell is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the positive direction Dip: A dip is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction Interruption: An interruption is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction See RMS voltage refreshed each half-cycle FUCTUATION FUCTUATION EVENT Maximum current of RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle See RMS current refreshed each half-cycle Securrent RMS voltage: RMS voltage for multiple channels RMS voltage: RMS voltage for each channel and AVG (average) RMS current for multiple channels RMS voltage for each channel and AVG (average) RMS current for multiple channels RMS current: RMS voltage is 600.00V, 0.01V RMS voltage: 600.00V, 0.01V
method Range and accuracy Inrush current Display item Measurement method Range and accuracy RMS voltage, RM Display items Measurement method Sampling frequency Measurement range, resolution Measurement accuracy	Swell: A swell is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the positive direction Dip: A dip is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction Interruption: An interruption is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction See RMS voltage refreshed each half-cycle EVENT Maximum current of RMS current refreshed each 1/2 cycle Detected when the RMS voltage refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle EVENT Maximum current of RMS current refreshed each 1/2 cycle exceeds the threshold in a positive direction See RMS current See RMS current refreshed each half-cycle Image: Imag
method Range and accuracy Inrush current Display item Measurement method Range and accuracy RMS voltage, RM Display items Measurement method Sampling frequency Measurement range, resolution Measurement accuracy Voltage waveform	Swell: A swell is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the positive direction Dip: A dip is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction Interruption: An interruption is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction See RMS voltage refreshed each half-cycle EVENT Maximum current of RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle exceeds the threshold in a positive direction See RMS current refreshed each 1/2 cycle Detected when the RMS current refreshed each 1/2 cycle exceeds the threshold in a positive direction See RMS current refreshed each half-cycle EVENT Maximum current of RMS current refreshed each 1/2 cycle exceeds the threshold in a positive direction See RMS current refreshed each half-cycle See RMS current refreshed each half-cycle EVENT RMS voltage: RMS voltage for each channel and AVG (average) RMS voltage for multiple channels RMS current: RMS voltage for each channel and AVG (average) RMS current for multiple channels AC+DC True RMS type (Current DC value: with release of new clamp-on sensor) RMS voltage: 600.00V, 0.01V RMS voltage: 600.00V, 0.01V RMS voltage: 600.00V, 0.01V RMS voltage: 100.

Voltage waveform	peak/ Current waveform peak TIME PLOT EVENT
Display item	Positive peak value and negative peak value
Measurement method	Measured every 10 cycles (50 Hz) or 12 cycles (60 Hz) maximum and minimum points sampled during approx. 200 ms aggregation
Sampling frequency	200kHz
Measurement range, resolution	Voltage waveform peak: ±1200.0 Vpk, 0.1V Current waveform peak: The quadruple of RMS current measurement range Due to using clamp-on sensor; See Input specifications
Voltage waveform comparison EVENT	
Display item	Event detection only
Measurement method	A judgment area is automatically generated from the previous 200 ms aggregation waveform, and events are generated based on a comparison with the judgment wave- form. Waveform judgments are performed once for each 200 ms aggregation.
Comparison window width	10 cycles (50 Hz), 12 cycles (60 Hz)
No. of window points	4096 points synchronized with harmonic calculations
Frequency cycle TIME PLOT EVENT	
Measurement method	Calculated as the reciprocal of the accumulated whole-cycle time during one U1 (reference channel) cycle
Measurement range, resolution	70.000Hz, 0.001Hz
Measurement bandwidth	40.000 to 70.000Hz
Measurement accuracy	±0.200 Hz or less (for input from 10% f.s. to 110% f.s.)

Frequency	TIME PLOT EVENT
Measurement method	Calculated as the reciprocal of the accumulated whole-cycle time dur approx. 200ms period of 10 or 12 U1 (reference channel) cycles
	70.000Hz, 0.001Hz
	40.000 to 70.000Hz
Measurement accuracy	±0.020 Hz or less
10-sec frequenc	
Measurement method	Calculated as the reciprocal of the accumulated whole-cycle time during specified 10s period for U1 (reference channel) as per IEC61000-4-30
	70.000Hz, 0.001Hz
*	40.000 to 70.000Hz
Measurement accuracy	±0.010 Hz or less
Voltage DC value Measurement	Average value during approx. 20ms aggregation synchronized with
method	the reference channel (CH4 only)
Sampling frequency	
Measurement range, resolution	
Measurement accuracy	±0.3%rdg. ±0.08%f.s.
Current DC value	e (ch4 only; with release of new clamp-on sensor) TIME PLOT EVENT
Measurement	Average value during approx. 200ms aggregation synchronized to
method	reference channel (CH4 only)
Sampling frequency	
	Based on clamp-on sensor in use (with release of new clamp-on sens
Measurement accuracy	±0.5% rdg.±0.5%f.s. + clamp-on sensor accuracy
-	oparent power/ Reactive power TIME PLOT EVENT
Display items	Active power: Active power for each channel and sum value for multiple channel
Sispidy Itoms	Sink (consumption) and Source (regeneration)
	Apparent power: Apparent power of each channel and its sum for multiple channels
	No polarity
	Reactive power: Reactive power of each channel and its sum for multiple channels Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltage)
Measurement	Active power: Measured every 10 cycles (50 Hz) or 12 cycles (60 Hz)
method	Apparent power:Calculated from RMS voltage U and RMS current I
	Reactive power: Calculated using apparent power S and active power P
Sampling frequency	
Measurement range, resolution	
Measurement	Active power: ±0.2% rdg.±0.1% f.s. + clamp-on sensor accuracy
accuracy	Apparent power:±1 dgt. for calculations derived from the various measurement val Reactive power: ±1 dgt. for calculations derived from the various measurement val
A .: (D	
Active energy /R	
Display items	Active energy: WP+ (consumption), WP- (regeneration); Sum of multiple channel: Reactive energy:WQLAG (lag), WQLEAD (lead); Sum for multiple channels Elapsed t
Measurement	Measured every 10 cycles (50 Hz) or 12 cycles (60 Hz)
method	Integrated separately by consumption and regeneration from active powe
method	Integrated separately by consumption and regeneration from active powe Integrated separately by lag and lead from reactive power
method	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording
	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval
Sampling frequency	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz
	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz
Sampling frequency Measurement range, resolution	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications
Sampling frequency Measurement range, resolution Measurement accuracy	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy:Reactive power measurement accuracy ±10 dgt.
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200KHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy:Reactive power measurement accuracy ±10 dgt. Splacement power factor
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy:Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items Measurement	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy:Reactive power measurement accuracy ±10 dgt. Splacement power factor Displacement power factor CIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor:
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items Measurement	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy:Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor :
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items Measurement	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy:Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor :
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items Measurement method	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200KHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor : Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltage
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items Measurement method Sampling frequency	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor : Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltage 200kHz
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items Measurement method Sampling frequency	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200KHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor : Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltage
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items Measurement method Sampling frequency Measurement range, resolution	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor : Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200kHz -1.0000 (lead) to 0.0000 to 1.0000 (lag)
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items Measurement method Sampling frequency Measurement range, resolution	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor : Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltage 200kHz
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items Measurement method Sampling frequency Measurement range, resolution /oltage unbalance factor/ Ca	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy:Reactive power measurement accuracy ±10 dgt. Splacement power factor Displacement power factor TIMEPLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor : Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltage 200kHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) urrent unbalance factor (negative-phase, zero-phase) TIME PLOT Voltage unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items Measurement method Sampling frequency Measurement range, resolution /oltage unbalance factor/ Ca	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor : Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200kHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) urrent unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Current unbalance factor:
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items Measurement method Sampling frequency Measurement range, resolution foltage unbalance factor/ Co Display items	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor : Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200kHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) urrent unbalance factor; Negative-phase, zero-phase) TIME PLOT Voltage unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Unerge turbalance factor; Negative-phase unbalance factor; Negative-phase unbalanc
Sampling frequency Measurement range, resolution Measurement accuracy Power factor / Dis Display items Measurement method Sampling frequency Measurement range, resolution foltage unbalance factor/ Co Display items Measurement	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor : Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltage 200kHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) Timer unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Current unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase fundamental wave (line-to-line
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items Measurement method Sampling frequency Measurement range, resolution /oltage unbalance factor/ Co Display items Measurement method	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor : Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltage 200kHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) reret unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Current unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase fundamental wave (line-to-line voltage) for three-phase 3-wire (3P3W2M, 3P3W3M) and three-phase 4-wire connection
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items Measurement method Sampling frequency Measurement range, resolution foltage unbalance factor/ Cr Display items Measurement method Sampling frequency	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200KHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor : Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200KHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) Voltage unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase fundamental wave (line-to-line voltage) is of three-phase 4-wire connection 200KHz
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items Measurement method Sampling frequency Measurement range, resolution foltage unbalance factor/ Cr Display items Measurement method Sampling frequency	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor : Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltage 200kHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) reret unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Current unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor calculated using various components of the three-phase fundamental wave (line-to-line voltage) for three-phase 3-wire (3P3W2M, 3P3W3M) and three-phase 4-wire connection
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items Measurement method Sampling frequency Measurement range, resolution foltage unbalance factor/ Cr Display items Measurement method Sampling frequency	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200KHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIMEPLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor is Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200KHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) Trent unbalance factor : Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase fundamental wave (line-to-line voltage unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase 4-wire connector 200KHz 200KHz Voltage unbalance factor: Negative-phase 3-wire (3P3W2M, 3P3W3M) and three-phase 4-wire connector 200KHz Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor:
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items Measurement method Sampling frequency Measurement range, resolution foltage unbalance factor/ Cr Display items Measurement method Sampling frequency Measurement range	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200KHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor i Calculated from the phase difference between the fundamental voltage wa and the fundamental current vave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200KHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) urrent unbalance factor : Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase unbalance factor Calculated using various components of the three-phase 4-wire connection 200KHz Voltage unbalance factor: Negative-phase 3-wire (3P3W2M, 3P3W3M) and three-phase 4-wire connection 200KHz Voltage unbalance factor: Negative-phase unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00%
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Di Display items Measurement method Display items Measurement range, resolution foltage unbalance factor/ Ci Display items Measurement method Sampling frequency Measurement range Measurement range	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor : Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200kHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) urrent unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase fundamental wave (line-to-line voltage unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase fundamental wave (line-to-line voltage) for three-phase 3-wire (3P3W2M, 3P3W3M) and three-phase 4-wire connection 2200kHz Voltage unbalance factor: Negative-phase 1/2 and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: ±0.15%
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Di Display items Measurement method Display items Measurement range, resolution foltage unbalance factor/ Ci Display items Measurement method Sampling frequency Measurement range Measurement range	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor : Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200kHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) urrent unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase fundamental wave (line-to-line voltage) for three-phase 3-wire (3P3W2M, 3P3W3M) and three-phase 4-wire connection 200kHz Voltage unbalance factor: Calculated using various components of the three-phase 4-wire connection 200kHz Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: ±0.15% Current unbalance factor:
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Di Display items Measurement method Display items Measurement range, resolution foltage unbalance factor/ Ci Display items Measurement method Sampling frequency Measurement range Measurement range igh-order harmonic voltage compone	Integrated separately by consumption and regeneration from active power Integrated separately by lag and lead from reactive power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIMEPLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor : Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200kHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) urrent unbalance factor (negative-phase, zero-phase) TIME PLOT Voltage unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase fundamental wave (line-to-line voltage) for three-phase 3-wire (3P3W2M, 3P3W3M) and three-phase 4-wire connection 200kHz Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor:
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Di Display items Measurement method Display items Measurement range, resolution foltage unbalance factor/ Ci Display items Measurement method Sampling frequency Measurement range Measurement range	Integrated separately by consumption and regeneration from active power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIMEPLOT interval Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor : Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200kHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) reret unbalance factor (negative-phase, zero-phase) TIME PLOT Voltage unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase fundamental wave (line-to-line voltage) for three-phase 3-wire (3P3W2M, 3P3W3M) and three-phase 4-wire connection 200kHz Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00%
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Di Display items Measurement method Display items Measurement range, resolution foltage unbalance factor/ Ci Display items Measurement method Sampling frequency Measurement range Measurement range igh-order harmonic voltage compone	Integrated separately by consumption and regeneration from active power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200KHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200KHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) urrent unbalance factor (negative-phase, zero-phase) TIME PLOT Voltage unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor calculated using various components of the three-phase 4-wire connection 200KHz Voltage unbalance factor: Negative-phase 3-wire (3PSW2M), 3PSW3M) and three-phase 4-wire connection 200KHz Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: — attiligh-order harmonic voltage component value
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Di Display items Measurement method Display items Measurement range, resolution foltage unbalance factor/ Ci Display items Measurement method Sampling frequency Measurement range Measurement range igh-order harmonic voltage compone	Integrated separately by consumption and regeneration from active power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIMEPLOT interval Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor : Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200kHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) reret unbalance factor (negative-phase, zero-phase) TIME PLOT Voltage unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase fundamental wave (line-to-line voltage) for three-phase 3-wire (3P3W2M, 3P3W3M) and three-phase 4-wire connection 200kHz Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00%
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Di Display items Measurement method Display items Measurement range, resolution foltage unbalance factor/ Ci Display items Measurement method Sampling frequency Measurement range Measurement range igh-order harmonic voltage compone	Integrated separately by consumption and regeneration from active power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200KHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200KHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) urrent unbalance factor (negative-phase, zero-phase) TIME PLOT Voltage unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor calculated using various components of the three-phase 4-wire connection 200KHz Voltage unbalance factor: Negative-phase 3-wire (3PSW2M), 3PSW3M] and three-phase 4-wire connection 200KHz Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Di Display items Measurement method Display items Measurement range, resolution foltage unbalance factor/ Ci Display items Measurement method Sampling frequency Measurement range Measurement range igh-order harmonic voltage compone	Integrated separately by consumption and regeneration from active power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200KHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from the phase difference between the fundamental voltage we and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200KHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) urrent unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Calculated factor: Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase fundamental wave (line-to-line voltage) for three-phase 3-wire (3P3W2M, 3P3W3M) and three-phase 4-wire connection 200KHz Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: ±0.15% Current unbalance factor: ±0.15% Current unbalance factor:
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Di Display items Measurement method Display items Measurement range, resolution foltage unbalance factor/ Ci Display items Measurement method Sampling frequency Measurement range Measurement range igh-order harmonic voltage compone	Integrated separately by consumption and regeneration from active power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor : Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200kHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) United to the phase difference factor, zero-phase unbalance factor Calculated stor in balance factor, zero-phase unbalance factor Calculated using various components of the three-phase fundamental wave (line-to-line voltage) for three-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase 4-wire connection 200kHz Voltage unbalance factor: Megative-phase unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: High-
Sampling frequency Measurement range, resolution Measurement accuracy Power factor / Dis Display items Measurement method Sampling frequency Measurement range, resolution foltage unbalance factor/ Ct Display items Measurement method Sampling frequency Measurement range Measurement range Measurement accuracy	Integrated separately by consumption and regeneration from active power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200KHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200KHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) Trent unbalance factor (negative-phase, zero-phase) TIME PLOT Voltage unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Current unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Current unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor 200KHz Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% EVENT For single incidents and continuous transient incidents High-order harmonic voltage component value High-order harmonic voltage component value High-order harmonic voltage component maximum value High-order harmonic voltage component ma
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Di Display items Measurement method Sampling frequency Measurement range, resolution foltage unbalance factor/ Ct Display items Measurement method Sampling frequency Measurement range Measurement range Measurement accuracy Display items	Integrated separately by consumption and regeneration from active power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200KHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from the phase difference between the fundamental voltage we and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200KHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) urrent unbalance factor (negative-phase, zero-phase) TIME PLOT Voltage unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase 4-wire connection 200KHz Voltage unbalance factor: Negative-phase unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unba
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Di Display items Measurement method Sampling frequency Measurement range, resolution foltage unbalance factor/ Ct Display items Measurement method Sampling frequency Measurement range Measurement range Measurement accuracy Display items	Integrated separately by consumption and regeneration from active power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200KHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from the phase difference between the fundamental voltage we and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200KHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) urrent unbalance factor (negative-phase, zero-phase) TIME PLOT Voltage unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase 4-wire connection 200KHz Voltage unbalance factor: Negative-phase unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unba
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Di Display items Measurement method Display items Measurement range, resolution foltage unbalance factor/ Ci Display items Measurement method Sampling frequency Measurement range Measurement range igh-order harmonic voltage compone	Integrated separately by consumption and regeneration from active power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor IIMEPLOT interval Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor : Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200kHz 1.0000 (lead) to 0.0000 to 1.0000 (lag) urrent unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase fundamental wave (line-to-line voltage unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase fundamental wave (line-to-line voltage) for three-phase 3-wire (3P3W2M, 3P3W3M) and three-phase 4-wire connection 200kHz Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items Measurement method Sampling frequency Measurement range, resolution /oltage unbalance factor/ Ct Display items Measurement method Measurement range Measurement range Measurement accuracy igh-order hamonic voltage compone Display items	Integrated separately by consumption and regeneration from active power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200KHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200KHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) urrent unbalance factor (negative-phase, zero-phase) TIME PLOT Voltage unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase 4-wire connection 200KHz Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: — at/High-order harmonic voltage component value High-order harmonic voltage component value High-order harmonic voltage component maximum value High-order harmonic current component maximum value High-order harmonic voltage compone
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Dis Display items Measurement method Sampling frequency Measurement range, resolution foltage unbalance factor/ Ct Display items Measurement range Measurement range Measurement range Measurement accuracy ligh-order harmonic voltage compose Display items	Integrated separately by consumption and regeneration from active power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200KHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIMEPLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200KHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) Trent unbalance factor (negative-phase, zero-phase) TIME PLOT Voltage unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Current unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Current unbalance factor: Negative-phase unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: For continuous incidents High-order harmonic voltage component value High-order harmonic voltage component value High-order harmonic voltage component maximum value High-order harmonic voltage component maximum value High-order harmonic current component maximum value High-order harmonic voltage component maximum value High-order harmonic voltage component maximum value High-order harmonic volt
Sampling frequency Measurement range, resolution Measurement accuracy Power factor / Dis Display items Measurement method Sampling frequency Measurement range, resolution /oltage unbalance factor / Ci Display items Measurement method Sampling frequency Measurement range Measurement range Measurement accuracy Display items Measurement method Sampling frequency Measurement method Sampling frequency Measurement method	Integrated separately by consumption and regeneration from active power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200kHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor IIMEPLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200kHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) urrent unbalance factor (negative-phase, zero-phase) TIME PLOT Voltage unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase fundamental wave (line-to-line voltage) for three-phase 3-wire (3P3WM) and three-phase 4-wire connection 200kHz Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: ±0.15% Current unbalance factor: : Component is V and unbalance factor is 0.00% to 100.00% Voltage unbalance factor: : Component is V and unbalance factor is 0.00% to 100.00% Cotrage unbalance factor: : Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: : Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: : Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: : Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: : Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: : Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: : Component is
Sampling frequency Measurement range, resolution Measurement accuracy Power factor /Di Display items Measurement method Sampling frequency Measurement range, resolution Koltage unbalance factor/ Cr Display items Measurement method Sampling frequency Measurement range Display items Display items Measurement method Sampling frequency Measurement method	Integrated separately by consumption and regeneration from active power Integration starts at the same time as recording Recorded at the specified TIMEPLOT interval 200KHz Depends on the voltage × current range combination; see Input specifications Active energy: Active power measurement accuracy ±10 dgt. Reactive energy: Reactive power measurement accuracy ±10 dgt. Splacement power factor TIME PLOT EVENT Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from RMS voltage U, RMS current I, and active power P Displacement power factor of each channel and its sum value for multiple channels Power factor: Calculated from the phase difference between the fundamental voltage wa and the fundamental current wave Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltag 200KHz -1.0000 (lead) to 0.0000 to 1.0000 (lag) urrent unbalance factor ; negative-phase, zero-phase) TIME PLOT Voltage unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Current unbalance factor: Negative-phase unbalance factor, zero-phase unbalance factor Calculated using various components of the three-phase 4-wire connection 200KHz Voltage unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% Current unbalance factor: Component is V and unbalance factor is 0.00% to 100.00% C

Harmonic voltage/ Harmo	nic current (including fundamental component) TIME PLOT EVENT
Display items	Select either RMS or content percentage; From 0 to 50th order
Measurement method	Uses IEC61000-4-7:2002.
Comparison window width	10 cycles (50 Hz), 12 cycles (60 Hz)
No. of window points	4096 points synchronized with harmonic calculations
Measurement range, resolution	Harmonic voltage:600.00V, 0.01V Harmonic current:Based on clamp-on sensor in use; see Input specifications
Measurement accuracy	See measurement accuracy with a fundamental wave of 50/60 Hz When using an AC-only clamp sensor, 0th order is not specified for current and power
Total harmonic voltage/ Total harmonic current distortion factor (TIME PLOT) EVENT	
Display items	THD-F (total harmonic distortion factor for the fundamental wave) THD-R (total harmonic distortion factor for the total harmonic including the fundamental wave)
Measurement method	Based on IEC61000-4-7:2002; Max. order: 50th

Measurement method	Based on IEC61000-4-7:2002; Max. order: 50th
Comparison window width	10 cycles (50 Hz), 12 cycles (60 Hz)
No. of window points	4096 points synchronized with harmonic calculations
Measurement range, resolution	0.00 to 100.00%(Voltage), 0.00 to 500.00%(Current)
Measurement accuracy	-

Harmonic power (including fundamental component) TIME PLOT EVENT

Display item	Select either RMS or content percentage; From 0 to 50th order
Measurement method	Uses IEC61000-4-7:2002.
Comparison window width	10 cycles (50 Hz), 12 cycles (60 Hz)
No. of window points	4096 points synchronized with harmonic calculations
Measurement range, resolution	Depends on the voltage × current range combination; See Input specifications
Measurement	See measurement accuracy with a fundamental wave of 50/60 Hz
accuracy	When using an AC-only clamp sensor, order 0 is not specified for current and power

Measurement acc	Measurement accuracy with a fundamental wave of 50/60 Hz	
Harmonic input	Measurement accuracy	
	Specified with a nominal voltage of at least 100 V Order 0: ±0.3%rdg.±0.08%f.s. Order 1+: ±5.00%rdg	
Voltage (<1% of nominal voltage)	Specified with a nominal voltage of at least 100 V Order 0: ±0.3%rdg.±0.08%f.s. Order 1+: ±0.05% of nominal voltage	
Current	Order 0: ±0.5%rdg.±0.5%f.s. +clamp-on sensor accuracy Order 1 to 20th: ±0.5%rdg.±0.2%f.s. +clamp-on sensor accuracy Order 21 to 50th: ±1.0%rdg.±0.3%f.s. +clamp-on sensor accuracy	
Power	Order 0: ±0.5%rdg.±0.5%f.s. +clamp-on sensor accuracy Order 1 to 20th: ±0.5%rdg.±0.2%f.s. +clamp-on sensor accuracy Order 21 to 30th: ±1.0%rdg.±0.3%f.s. +clamp-on sensor accuracy Order 31 to 40th: ±2.0%rdg.±0.3%f.s. +clamp-on sensor accuracy Order 41 to 50th: ±3.0%rdg.±0.3%f.s. +clamp-on sensor accuracy	

Harmonic voltage phase angle/ Harmonic current phase angle (including fundamental component) TIME PLOT	
Display item	Harmonic phase angle components for whole orders
Measurement method	Uses IEC61000-4-7:2002.
Comparison window width	10 cycles (50 Hz), 12 cycles (60 Hz)
No. of window points	4096 points synchronized with harmonic calculations
Measurement range, resolution	-180.00° to 0.00° to 180.00°
Measurement accuracy	_

Harmonic voltage-current phase angle (including fundamental component) **TIME PLOT EVENT**

Display item	Indicates the difference between the harmonic voltage phase angle and the harmonic current phase angle. Harmonic voltage-current phase difference for each channel and sum (total) value for multiple channels
Measurement method	Uses IEC61000-4-7:2002.
Comparison window width	10 cycles (50 Hz), 12 cycles (60 Hz)
No. of window points	4096 points synchronized with harmonic calculations
Measurement range, resolution	-180.00° to 0.00° to 180.00°
Measurement accuracy	1st to 3rd orders: $\pm 2^{\circ}$ +clamp-on sensor accuracy 4th to 50th orders: $\pm (0.05^{\circ} \times k+2^{\circ})$ +clamp-on sensor accuracy; (k: harmonic orders) Specified with a harmonic voltage of 1 V for each order and a current level of at 1% f.s. or greater.

Inter-harmonic voltage and inter-harmonic current TIME PLOT

Display item	Select either RMS or content percentage; 0.5 to 49.5th orders
Measurement method	Uses IEC61000-4-7:2002.
Comparison window width	10 cycles (50 Hz), 12 cycles (60 Hz)
No. of window points	4096 points synchronized with harmonic calculations
Measurement range, resolution	Inter-harmonic voltage: 600.00V, 0.01V Inter-harmonic current: Due to using clamp-on sensor; See Input specifications
Measurement accuracy	Inter-harmonic voltage (Specified with a nominal voltage of at least 100 V): At least 1% of harmonic input nominal voltage: ±5.00% rdg. <1% of harmonic input nominal voltage: ±0.05% of nominal voltage Inter-harmonic current: Unspecified

K Factor (multiplication factor)		TIME PLOT	EVENT		
Measurement method	Calculated using the harmonic RMS current of the 2nd to 50th orders				
Comparison window width	10 cycles (50 Hz), 12 cycles (60 Hz)				
No. of window points	4096 points synchronized with harmo	nic calculations			
Measurement range, resolution	0.00 to 500.00				
Measurement accuracy	_				

Instantaneous fli	cker value TIME PLOT
	As per IEC61000-4-15 User-selectable from 230 Vlamp/120 Vlamp (when Pst and Plt are selected for flicker measurement)/4 types of Ed2 filter (230 Vlamp 50/60 Hz, 120 Vlamp 60/50 Hz)
Measurement range, resolution	99.999, 0.001

IEC Flicker Display items	Short interval flicker Pst	, lona in	TIME P terval flicker Plt		
Measurement				d2.	
method	Based on IEC61000-4-15:1997 +A1:2003 Ed1/Ed2. Pst is calculated after 10 minutes of continuous measurement and Plt after 2 hours of continuous measurement				
Measurement range	0.0001 to 10000 P.U. br			ts with a logarithm	
Measurement	Pst ±5% rdg. (Specified v				
accuracy	4-15 Ed1.1 and IEC61000			1	
Flicker filter	Select 230 V lamp Ed1, 12	0 V lamp	Ed1, 230 V lamp l	Ed2, or 120 V lamp Ed2	
V10 Flicker			TIME P		
Display items	ΔV10 measured at one minute in hour, fourth largest value for one				
Measurement method	Calculated values are subject to 100				
Measurement range, resolution	0.000 to 99.999V				
Measurement	±2% rdg.±0.01 V (with a				
accuracy Threshold	a fluctuation voltage of 0.00 to 9.99V alarm out				
Throshold	minute is compared to t				
· ·	rs specifications (O	<u> </u>			
Clamp-on sensor	CLAMP ON SENSOR 9694	CLAMP ON SENSOR 9660		CLAMP ON SENSOR 9661	
Primary current rating	5A AC	100A A		500A AC	
Output voltage	10mV/A AC	AC 1mV/A AC		AC 1mV/A AC	
Measurement range	See input specifications				
Amplitude accuracy *	±0.3%rdg.±0.02%f.s. *		•	±0.3%rdg.±0.01%f.s	
Phase accuracy *	±2° or less *	±1° or l		±0.5° or less *	
Maximum allowable input * Maximum rated	50 A continuous * CAT III 300Vrms (insulat		continuous *	550 A continuous * CAT III 600 Vrms	
voltage to earth				(insulated conducto	
Frequency characteristics	±1.0% or less for 66Hz	to 5kHz	(deviation from s	specified accuracy)	
Cord length	3m (9.84ft)				
Measurable conductor diameter	Max.q15mm (0.59")	1.01D/C	00")	Max. \$46mm (1.81")	
Dimensions & weight	46W(1.81")×135H(5.31" 230g(8.1oz.))×21D(0	.83")mm,	78W(3.07")×152H(5.98")×4 D(1.65")mm, 380g(13.4oz.)	
Appearance	See "Options, Current n	neasure	ment (p.12)"		
*: 45 to 66Hz					
Clamp-on sensor	CLAMP ON SENSOR 1000 A AC	9669		N SENSOR 9667	
Primary current rating Output voltage	0.5mV/A AC		500A AC, 5000 500 mV AC f.s.	A AC	
Measurement range	See input specifications	;			
Amplitude accuracy *	±1.0%rdg.±0.01%f.s. *			mV (for input 10% or	
		. more of the ran		ge) *	
Phase accuracy * Maximum allowable input *	±1° or less * 1000 A continuous *		±1° or less * 10000 A contin	10112 *	
Maximum rated	CATIII 600Vrms		CATIII 1000 Vrn		
voltage to earth	(insulated conductor)				
Frequency	Within ±2% at 40Hz to \$			r 10 Hz to 20kHz	
characteristics	(deviation from accurac	(deviation from accuracy) (deviation fro		accuracy) it: 2m (6.56ft)	
Cord length				to connector: 1m (3.28ft)	
Measurable con-	Max. φ55 mm(2.17"), 80 Max. φ254mm		10")		
	(3.15)×20(0.79) mm busbar		,		
ductor diameter		Gircuit: 57W (2)		am (0.00.#) 0.40 m (0.5 am)	
ductor diameter Dimensions and	99.5W (3.92") × 188H (7.4			nm (2.99 ft), 240 g (8.5 oz.), 24") × 86H (3.39") ×	
ductor diameter Dimensions and weight	99.5W (3.92") × 188H (7.4 42D (1.65") mm, 590g (20		Circuit: 57W (2.3 30D (1.18") mm,	24") × 86H (3.39") × 140 g (4.9 oz.)	
ductor diameter Dimensions and			Circuit: 57W (2.: 30D (1.18") mm, LR03 alkaline bi	24") × 86H (3.39") × 140 g (4.9 oz.) attery × 4 (continuous	
ductor diameter Dimensions and weight			Circuit: 57W (2.) 30D (1.18") mm, LR03 alkaline ba operation max.	24") × 86H (3.39") × 140 g (4.9 oz.) attery × 4 (continuous	
ductor diameter Dimensions and weight Power supply Appearance).8 oz.)	Circuit: 57W (2.3 30D (1.18") mm, LR03 alkaline ba operation max. or AC ADAPTER	24") × 86H (3.39") × 140 g (4.9 oz.) attery × 4 (continuous 168 hours)	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz	42D (1.65") mm, 590g (20).8 oz.) neasure	Circuit: 57W (2.3 30D (1.18") mm, LR03 alkaline ba operation max. or AC ADAPTER ment (p.12)"	24") × 86H (3.39") × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately)	
ductor diameter Dimensions and weight Power supply Appearance * : 45 to 66Hz Clamp-on sensor	42D (1.65") mm, 590g (20 —).8 oz.) neasure	Circuit: 57W (2.3 30D (1.18") mm, LR03 alkaline ba operation max. or AC ADAPTER ment (p.12)"	24") × 86H (3.39") × 140 g (4.9 oz.) attery × 4 (continuous 168 hours)	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz	42D (1.65") mm, 590g (20).8 oz.) neasure	Circuit: 57W (2.3 30D (1.18") mm, LR03 alkaline bio operation max. or AC ADAPTER ment (p.12)"	24") × 86H (3.39") × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately)	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range	42D (1.65") mm, 590g (20 — See "Options, Current n CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications).8 oz.) neasure 695-02	Circuit: 57W (2.: 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC	24") × 86H (3.39") × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately) SENSOR 9695-03	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy *	42D (1.65") mm, 590g (20).8 oz.) neasure 695-02	Circuit: 57W (2.3 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3% rdg.±0.0	24") × 86H (3.39") × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately) SENSOR 9695-03	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Phase accuracy *	42D (1.65") mm, 590g (20 See "Options, Current n CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° *).8 oz.) neasure 695-02	Circuit: 57W (2.3 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3%rdg.±0.0 Within ±1° *	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately) SENSOR 9695-03	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Phase accuracy * Maximum allowable input *	42D (1.65") mm, 590g (20 — See "Options, Current n CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous *).8 oz.) neasure 695-02	Circuit: 57W (2.3 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3% rdg.±0.0 Within ±1° * 130 A continuo	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately) SENSOR 9695-03	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Phase accuracy *	42D (1.65") mm, 590g (20 See "Options, Current n CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° *).8 oz.) neasure 695-02	Circuit: 57W (2.3 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3% rdg.±0.0 Within ±1° * 130 A continuo	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately) SENSOR 9695-03	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Phase accuracy * Maximum rated voltage to earth Frequency characteristic	42D (1.65") mm, 590g (20 — See "Options, Current n CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous * CATIII 300Vrms (insulate Within ±2% at 40Hz to 5	0.8 oz.) neasure 695-02 ; ed cond 5kHz (de	Circuit: 57W (2.3 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3%rdg.±0.0 Within ±1° * 130 A continuo uctor) eviation from acc	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately) SENSOR 9695-03 22%f.s. *	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Phase accuracy * Maximum rated voltage to earth Frequency characteristic Cord length	42D (1.65") mm, 590g (20 — See "Options, Current n CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous * CATIII 300Vrms (insulate Within ±2% at 40Hz to 5 CONNECTION CORD	0.8 oz.) neasure 695-02 ; ed cond 5kHz (de	Circuit: 57W (2.3 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3%rdg.±0.0 Within ±1° * 130 A continuo uctor) eviation from acc	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately) SENSOR 9695-03 22%f.s. *	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Phase accuracy * Maximum allowable input * Maximum rated voltage to earth Frequency characteristic Cord length Measurable conductor diameter	42D (1.65") mm, 590g (20 — See "Options, Current m CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous * CATIII 300Vrms (insulate Within ±2% at 40Hz to 5 CONNECTION CORD Max.ф15mm(0.59")	0.8 oz.) 695-02 5 ed cond 5kHz (de 9219 (sc	Circuit: 57W (2.3 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3%rdg.±0.0 Within ±1° * 130 A continuo uctor) eviation from acc bid separately) is	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately) SENSOR 9695-03 22%f.s. * us * euracy) required.	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Phase accuracy * Phase accuracy * Maximum allowable input * Maximum rated voltage to earthh Frequency characteristic Cord length Measurable conductor diameter Dimensions and weight	42D (1.65") mm, 590g (20 See "Options, Current m CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous * CATIII 300Vrms (insulate Within ±2% at 40Hz to 8 CONNECTION CORD Max.ф15mm(0.59") 51W(2.01")×58H(2.28"):	0.8 oz.) 695-02 695-	Circuit: 57W (2.3 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3% rdg.±0.0 Within ±1° * 130 A continuo uctor) eviation from acco bid separately) is 75")mm, 50g(1.8	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately) SENSOR 9695-03 22%f.s. * us * euracy) required.	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy* Phase accuracy* Maximum rated voltage to earth Frequency characteristic Cord length Measuble conductor diameter Dimensions and weight Appearance Note: CONNECTIC	42D (1.65") mm, 590g (20 — See "Options, Current m CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous * CATIII 300Vrms (insulate Within ±2% at 40Hz to 5 CONNECTION CORD Max.ф15mm(0.59")	0.8 oz.) 695-02 695-	Circuit: 57W (2.: 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3%rdg.±0.0 Within ±1° * 130 A continuo uctor) eviation from acc bid separately) is 75")mm, 50g(1.8 ment (p.12)"	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately) SENSOR 9695-03 22%f.s. * us * euracy) required.	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Measurement range Maximum allowable input * Maximum allowable input * Maximum rated voltage to earth Frequency characteristic Cord length Measurable conductor diameter Dimensions and weight Appearance Note: CONNECTIO *: 45 to 66Hz	42D (1.65") mm, 590g (20 — See "Options, Current m CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous * CATIII 300Vrms (insulate Within ±2% at 40Hz to 8 CONNECTION CORD Max.ф15mm(0.59") 51W(2.01")×58H(2.28")) See "Options, Current m DN CORD 9219 (sold see	0.8 oz.) neasure 695-02 5 ed cond 5kHz (de 9219 (sc ×19D(0.7 neasure paratel	Circuit: 57W (2.3 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC 1mV/A AC 40.3% rdg.±0.0 Within ±1° * 130 A continuo uctor) eviation from acc old separately) is 75")mm, 50g(1.8 ment (p.12)" by) is required.	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuou: 168 hours) 9445 (sold separately) SENSOR 9695-03 22%f.s. * us * :uracy) required.	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Measurement range Amplitude accuracy * Phase accuracy * Phase accuracy * Maximum allowable input * Maximum rated voltage to earth Frequency characteristic Cord length Measurable conductor diameter Dimensions and weight Appearance Note: CONNECTIO *: 45 to 66Hz Clamp-on leak sensor	42D (1.65") mm, 590g (20 — See "Options, Current m 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous * CATIII 300Vrms (insulate Within ±2% at 40Hz to 8 CONNECTION CORD 0 Max.ф15mm(0.59") 51W(2.01")×58H(2.28") See "Options, Current m ON CORD 9219 (sold set	0.8 oz.) neasure 695-02 5 ed cond 5kHz (de 9219 (sc ×19D(0.7 neasure paratel	Circuit: 57W (2.3 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3% rdg.±0.0 Within ±1° * 130 A continuo uctor) eviation from acc bid separately) is 75")mm, 50g(1.8 ment (p.12)" y) is required. CLAMP ON L	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately) SENSOR 9695-03 22%f.s. * us * euracy) required.	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy* Phase accuracy* Maximum allowable input* Maximum rated voltage to earth Frequency characteristic Cord length Measurable conductor diameter Dimensions and weight Appearance Note: CONNECTIO *: 45 to 66Hz Clamp-on leak sensor Primary current rating	42D (1.65") mm, 590g (20 — See "Options, Current m CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous * CATIII 300Vrms (insulate Within ±2% at 40Hz to 8 CONNECTION CORD Max.ф15mm(0.59") 51W(2.01")×58H(2.28")) See "Options, Current m DN CORD 9219 (sold see	0.8 oz.) neasure 695-02 5 ed cond 5kHz (de 9219 (sc ×19D(0.7 neasure paratel	Circuit: 57W (2.3 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC 1mV/A AC 40.3% rdg.±0.0 Within ±1° * 130 A continuo uctor) eviation from acc old separately) is 75")mm, 50g(1.8 ment (p.12)" by) is required.	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately) SENSOR 9695-03 22%f.s. * us * uracy) required. 502.)	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Maximum allowable input * Maximum rated voltage to earth Frequency characteristic Cord length Measurable conductor diameter Dimensions and weight Appearance Note: CONNECTION *: 45 to 66Hz Clamp-on leak sensor Primary current rating Output voltage	42D (1.65") mm, 590g (20 — See "Options, Current m CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous * CATIII 300Vrms (insulate Within ±2% at 40Hz to ± CONNECTION CORD Max.ф15mm(0.59") 51W(2.01")×58H(2.28")) See "Options, Current m DN CORD 9219 (sold see CLAMP ON LEAK SENSOR 9 10A AC 100 mV/A AC	0.8 oz.) neasure 695-02 3 ed cond 5kHz (de 9219 (sc ×19D(0.7 neasure paratel 657-10	Circuit: 57W (2.: 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3%rdg.±0.0 Within ±1° * 130 A continuo uctor) eviation from acc old separately) is 75")mm, 50g(1.8 ment (p.12)" y) is required. CLAMP ON L 10A AC	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately) SENSOR 9695-03 22%f.s. * us * uracy) required. 502.)	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Maximum rated voltage to earth Frequency characteristic Cord length Measurable conductor diameter Dimensions and weight Appearance Note: CONNECTIO *: 45 to 66Hz Clamp-on leak sensor Primary current rating Output voltage Measurement range Amplitude accuracy *	42D (1.65") mm, 590g (20 See "Options, Current m CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous * CATIII 300Vrms (insulate Within ±2% at 40Hz to 9 CONNECTION CORD 51W(2.01")×58H(2.28")) See "Options, Current m ON CORD 9219 (sold see CLAMP ON LEAK SENSOR 9 10A AC 100 mV/A AC See input specifications ±1.0%rdg.±0.05%f.s. *	0.8 oz.) neasure 695-02 3 ed cond 5kHz (de 9219 (sc ×19D(0.7 neasure paratel 657-10	Circuit: 57W (2.: 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3%rdg.±0.C Within ±1° * 130 A continuo uctor) aviation from acc old separately) is 75")mm, 50g(1.8 ment (p.12)" y) is required. CLAMP ON L 10A AC 100 mV/A AC ±1.0%rdg.±0.0	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately) SENSOR 9695-03 22%f.s. * us * uracy) required. toz.) EAK SENSOR 9675	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Phase accuracy * Maximum allowable input * Maximum allowable input * Maximum rated voltage to earth Frequency characteristic Cord length Measurable conductor diameter Dimensions and weight Appearance Note: CONNECTL Clamp-on leak sensor Primary current rating Output voltage Measurement range Residual current	42D (1.65") mm, 590g (20 — See "Options, Current n CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous * CATIII 300Vrms (insulate Within ±2% at 40Hz to 5 CONNECTION CORD 51W(2.01")×58H(2.28") See "Options, Current n ON CORD 9219 (sold see CLAMP ON LEAK SENSOR 9 10A AC 100 mV/A AC See input specifications ±1.0%rdg.±0.05%f.s. * Max. 5mA	0.8 oz.) neasure 695-02 695	Circuit: 57W (2.: 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3% rdg.±0.0 Within ±1° * 130 A continuo uctor) eviation from acc old separately) is 75")mm, 50g(1.8 ment (p.12)" y) is required. 10A AC 100 AC 1	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately) SENSOR 9695-03 22%f.s. * us * 22%f.s. * us * 22%f.s. * 22%f.s. * 22%f.s. * 22%f.s. * 22%f.s. *	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy* Phase accuracy* Maximum allowable input* Maximum rated voltage to earth Frequency characteristic Cord length Measurable conductor diameter Dimensions and weight Appearance Note: CONNECTIO *: 45 to 66Hz Clamp-on leak sensor Primary current rating Output voltage Measurement range Amplitude accuracy* Residual current characteristics	42D (1.65") mm, 590g (20 — See "Options, Current n CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous * CATIII 300Vrms (insulate Within ±2% at 40Hz to 5 CONNECTION CORD 9 Max.ф15mm(0.59") 51W(2.01")x58H(2.28"); See "Options, Current n DN CORD 9219 (sold see CLAMP ON LEAK SENSOR 9 10A AC 100 mV/A AC See input specifications ±1.0%rdg.±0.05%f.s. * Max.5mA (in 100A go and return elect	0.8 oz.) neasure 695-02 5 ed cond 5 5 5 2 2 2 9 9 19 0(0.7 19 0(0.7 10 10 10 10 10 10 10 10 10 10	Circuit: 57W (2.: 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3%rdg.±0.0 Within ±1° * 130 A continuo uctor) aviation from acc old separately) is 75")mm, 50g(1.8 ment (p.12)" y) is required. CLAMP ON L 10A AC 100 MV/A AC ±1.0%rdg.±0.0 Max. 1mA (in 10A go and i	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuou: 168 hours) 9445 (sold separately) SENSOR 9695-03 22% f.s. * us * uracy) required. toz.) EAK SENSOR 9675	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Phase accuracy * Maximum allowable input * Maximum allowable input * Maximum rated voltage to earth Frequency characteristic Cord length Measurable conductor diameter Dimensions and weight Appearance Note: CONNECTL Clamp-on leak sensor Primary current rating Output voltage Measurement range Residual current	42D (1.65") mm, 590g (20 — See "Options, Current n CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous * CATIII 300Vrms (insulate Within ±2% at 40Hz to 5 CONNECTION CORD 9 Max.ф15mm(0.59") 51W(2.01")×58H(2.28") See "Options, Current n ON CORD 9219 (sold see CLAMP ON LEAK SENSOR 9 10A AC 100 mV/A AC See input specifications ±1.0%rdg.±0.05%f.s. * Max. 5mA	0.8 oz.) neasure 695-02 5 ed cond 5 5 5 2 2 2 9 9 19 0(0.7 19 0(0.7 10 10 10 10 10 10 10 10 10 10	Circuit: 57W (2.: 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3%rdg.±0.0 Within ±1° * 130 A continuo uctor) aviation from acc old separately) is 75")mm, 50g(1.8 ment (p.12)" y) is required. CLAMP ON L 10A AC 100 MV/A AC ±1.0%rdg.±0.0 Max. 1mA (in 10A go and i	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately) SENSOR 9695-03 22%f.s. * us * 22%f.s. * us * 22%f.s. * 22%f.s. * 22%f.s. * 22%f.s. * 22%f.s. *	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Phase accuracy * Maximum allowable input * Maximum allowable input * Maximum rated voltage to earth Frequency characteristic Cord length Measurable conductor diameter Dimensions and weight Appearance Note: CONNECTI *: 45 to 66Hz Clamp-on leak sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Residual current characteristics Effect of external magnetic fields Maximum rated	42D (1.65") mm, 590g (20 — See "Options, Current n CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous * CATIII 300Vrms (insulate Within ±2% at 40Hz to 5 CONNECTION CORD 9 Max.ф15mm(0.59") 51W(2.01")x58H(2.28"); See "Options, Current n DN CORD 9219 (sold see CLAMP ON LEAK SENSOR 9 10A AC 100 mV/A AC See input specifications ±1.0%rdg.±0.05%f.s. * Max.5mA (in 100A go and return elect	0.8 oz.) neasure 695-02 	Circuit: 57W (2: 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3%rdg.±0.0 Within ±1° * 130 A continuo uctor) eviation from acc old separately) is required. CLAMP ON L 10A AC 100 mV/A AC ±1.0%rdg.±0.0 Max. 1mA (in 10A go and i A, Max. 7.5mA	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuou: 168 hours) 9445 (sold separately) SENSOR 9695-03 22%f.s. * us * 22%f.s. * us * 22%f.s. * 22%f.s. * 22%f.s. * 22%f.s. * 22%f.s. *	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Phase accuracy * Maximum rated voltage to earth Frequency characteristic Cord length Measurable conductor diameter Dimensions and weight Appearance Note: CONNECTIC *: 45 to 66Hz Clamp-on leak sensor Primary current rating Output voltage Measurement range Measurement range Mote: CONNECTIC *: 45 to 66Hz Clamp-on leak sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Residual current characteristics Effect of external magnetic fields Maximum rated voltage to earth	42D (1.65") mm, 590g (20 — See "Options, Current m CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous * CATIII 300Vrms (insulate Within ±2% at 40Hz to 8 CONNECTION CORD 9 Max.ф15mm(0.59") 51W(2.01")×58H(2.28"); See "Options, Current m ON CORD 9219 (sold see 10A AC 100 mV/A AC See input specifications ±1.0%rdg.±0.05%f.s. * Max. 5mA (in 100A go and return elect 400A AC/m correspond	0.8 oz.) neasure 695-02 	Circuit: 57W (2: 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3%rdg.±0.0 Within ±1° * 130 A continuo uctor) eviation from acc old separately) is required. CLAMP ON L 10A AC 100 mV/A AC ±1.0%rdg.±0.0 Max. 1mA (in 10A go and i A, Max. 7.5mA	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately) SENSOR 9695-03 22%f.s. * us * 22%f.s. * us * 22%f.s. * 22%f.s. * 22%f.s. * 22%f.s. * 22%f.s. *	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Phase accuracy * Maximum allowable input * Maximum rated voltage to earth Frequency characteristic Cord length Measurable conductor diameter Dimensions and weight Appearance Note: CONNECTIC *: 45 to 66Hz Clamp-on leak sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Residual current characteristics Effect of external magnetic fields Maximum rated voltage to earth Cord length	42D (1.65") mm, 590g (20 — See "Options, Current m CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous * CATIII 300Vrms (insulate Within ±2% at 40Hz to 8 CONNECTION CORD Max.ф15mm(0.59") 51W(2.01")×58H(2.28")) See "Options, Current m DN CORD 9219 (sold set 10A AC 100 mV/A AC See input specifications ±1.0%rdg.±0.05%f.s. * Max. 5mA (in 100A go and return elect 400A AC/m correspond CATIII 300Vrms (insulate 3m (9.84ft)	0.8 oz.) neasure 695-02 	Circuit: 57W (2.: 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3%rdg.±0.0 Within ±1° * 130 A continuo uctor) eviation from acc old separately) is 75")mm, 50g(1.8 ment (p.12)" y) is required. CLAMP ON L 100 AC 100 mV/A AC ±1.0%rdg.±0.0 Max. 1mA (in 10A go and i A, Max. 7.5mA uctor)	24*) × 86H (3.39*) × 140 g (4.9 oz.) 140 g (4.9 oz.) 140 g (4.9 oz.) 9445 (sold separately) 9445 (sold separately) SENSOR 9695-03 22% f.s. * us * us * uracy) required. 502.) EAK SENSOR 9675 05% f.s. * return electric wire)	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Phase accuracy * Maximum allowable input * Maximum allowable input * Maximum rated voltage to earth Frequency characteristic Cord length Measurable conductor diameter Dimensions and weight Appearance Amplitude accuracy * Residual current rating Output voltage Mate construction Construction Construction Construction Characteristics Effect of external magnetic fields Maximum rated voltage to earth Cord length Measurable conductor diameter Dimensions and Measurable conductor diameter Dimensions and Cord length Measurable conductor diameter Dimensions and	42D (1.65") mm, 590g (20 — See "Options, Current n CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous * CATIII 300Vrms (insulate Within ±2% at 40Hz to 9 CONNECTION CORD 9 Max.ф15mm(0.59") 51W(2.01")×58H(2.28"): See "Options, Current n DN CORD 9219 (sold see CLAMP ON LEAK SENSOR 9 10A AC 100 mV/A AC See input specifications ±1.0%rdg.±0.05%f.s. * Max. 5mA (in 100A go and return elect 400A AC/m correspond CATIII 300Vrms (insulate 3m (9.84ft) Max. ф40 mm(1.57") 74W(2.91")×145H(5.71")	0.8 oz.) neasurei 695-02 5 695-02 5 695-02 5 605-02 6	Circuit: 57W (2.: 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3%rdg.±0.C Within ±1° * 130 A continuo uctor) eviation from acc old separately) is required. CLAMP ON L 100 AC 100 mV/A AC CLAMP ON L 100 AC 100 mV/A AC ±1.0%rdg.±0.0 Max. 1mA (in 10A go and in A, Max. 7.5mA uctor) Max. \$30 mm(' 60W(2.36")×111	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuous 168 hours) 9445 (sold separately) SENSOR 9695-03 22% f.s. * us * uracy) required. 602.) EAK SENSOR 9675 05% f.s. * return electric wire) 1.18oz*) 2.5H(4.43*)×	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Phase accuracy * Maximum allowable input * Maximum allowable input * Maximum rated voltage to earth Frequency characteristic Cord length Measurable conductor diameter Dimensions and weight Appearance Amplitude accuracy * Residual current rating Output voltage Measurement range Amplitude accuracy * Resurement range Amplitude accuracy * Residual current characteristics Effect of external magnetic fields Maximum rated voltage to earth Cord length Measurable conductor diameter Dimensions and weight	42D (1.65") mm, 590g (20 — See "Options, Current n CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous * CATIII 300Vrms (insulate Within ±2% at 40Hz to 5 CONNECTION CORD 9 Max.ф15mm(0.59") 51W(2.01")×58H(2.28") See "Options, Current n DN CORD 9219 (sold see CLAMP ON LEAK SENSOR 9 10A AC 100 mV/A AC See input specifications ±1.0%rdg.±0.05%f.s. * Max. 5mA (in 100A go and return elect 400A AC/m correspond CATIII 300Vrms (insulate 3m (9.84ft) Max. ф40 mm(1.57") 74W(2.91")×145H(5.71" 42D(1.65)mm, 380g(13.	0.8 oz.) neasure 695-02 695	Circuit: 57W (2.: 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3%rdg.±0.C Within ±1° * 130 A continuo uctor) aviation from acc old separately) is 75")mm, 50g(1.8 ment (p.12)" y) is required. CLAMP ON L 10A AC 100 mV/A AC ±1.0%rdg.±0.0 Max. 1mA (in 10A go and i A, Max. 7.5mA uctor) Max. \$30 mm((60W(2.36")x11' 23.6D(23.6")mi	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuou: 168 hours) 9445 (sold separately) SENSOR 9695-03 22% f.s. * us * uracy) required. ioz.) EAK SENSOR 9675 05% f.s. * return electric wire) 1.18oz*)	
ductor diameter Dimensions and weight Power supply Appearance *: 45 to 66Hz Clamp-on sensor Primary current rating Output voltage Measurement range Amplitude accuracy * Phase accuracy * Maximum allowable input * Maximum allowable input * Maximum rated voltage to earth Cord length Measurable conductor diameter Dimensions and weight Appearance Amplitude accuracy * Residual current rating Output voltage Measurement range Amplitude accuracy * Phase accuracy * Maximum rated voltage to earth Characteristics Effect of external Maximum rated voltage to earth Cord length Measurable conductor diameter Dimensions and	42D (1.65") mm, 590g (20 — See "Options, Current n CLAMP ON SENSOR 9 50A AC 10mV/A AC See input specifications ±0.3%rdg.±0.02%f.s. * Within ±2° * 130 A continuous * CATIII 300Vrms (insulate Within ±2% at 40Hz to 9 CONNECTION CORD 9 Max.ф15mm(0.59") 51W(2.01")×58H(2.28"): See "Options, Current n DN CORD 9219 (sold see CLAMP ON LEAK SENSOR 9 10A AC 100 mV/A AC See input specifications ±1.0%rdg.±0.05%f.s. * Max. 5mA (in 100A go and return elect 400A AC/m correspond CATIII 300Vrms (insulate 3m (9.84ft) Max. ф40 mm(1.57") 74W(2.91")×145H(5.71")	0.8 oz.) neasure 695-02 695	Circuit: 57W (2.: 30D (1.18") mm, LR03 alkaline bi operation max. or AC ADAPTER ment (p.12)" CLAMP ON 100A AC 1mV/A AC ±0.3%rdg.±0.C Within ±1° * 130 A continuo uctor) aviation from acc old separately) is 75")mm, 50g(1.8 ment (p.12)" y) is required. CLAMP ON L 10A AC 100 mV/A AC ±1.0%rdg.±0.0 Max. 1mA (in 10A go and i A, Max. 7.5mA uctor) Max. \$30 mm((60W(2.36")x11' 23.6D(23.6")mi	24*) × 86H (3.39*) × 140 g (4.9 oz.) attery × 4 (continuou 168 hours) 9445 (sold separately) SENSOR 9695-03 22% f.s. * us * uracy) required. 602.) EAK SENSOR 9675 05% f.s. * return electric wire) 1.180z*) 2.5H(4.43*)×	

Options

9694 5A AC, φ15mm(0.59

PW9000

C1001

Soft case

For 3P3W WIRING

combination example: For three-phase 4-wire circuits containing leak current

Measurement guide

•Combination example: F	or three-phase 4-whe cho	containin	ig leak current	
PW3198 + 9661 × 3 POWER QUALITY CLAMP ON ANALYZER SENSOR (500A)	+ 9675 + PW9001 CLAMP ON WIRING LEAK SENSOR ADAPTER	+ C1001 - CARRYING CASE	+ 9624-50 PQA-HiVIEW PRO	
	Note: Company names and I	Product names appearing in th	is catalog are trademarks or reg	sistered trademarks of various companies.
HIOKI	HIOKI (Shanghai) Sales & Trading Co., L 1608-1610,Shanghai Times Square Office, 93 Huai H Shanghai, P.R.China POSTCODE: 200021	lai Zhong Road DISTR	IBUTED BY	
HIOKI E. E. CORPORATION	TEL +86-21-63910090/63910092 FAX +86-2 http://www.hioki.cn / E-mail: info@hioki.com.c Beijing Office : TEL +86-10-84418761 / 844:		Instrumentos de Prueba y Med	
Headquarters : 81 Koizumi, Ueda, Nagano, 386-1192, Japan TEL +81-268-28-0562 / FAX +81-268-28-0568 http://www.hioki.co.jp / E-mail: os-com@hioki.co.jp	Guangzhou Office : TEL +86-20-38392673 HIOKI INDIA PRIVATE LIMITED : Khandela House, 24 Guimohar Colony Indore 452 0 TEL +91-731-4223901, 4223902 FAX +91-731	3 / 38392676 www D18 (M.P.), India Call	w.finaltest.com.mx le del Ebano #1662 ana B.C. Mexico	
HIOKI USA CORPORATION : 6 Corporate Drive, Cranbury, NJ 08512 USA TEL +1-609-409-9109 / FAX +1-609-409-9108	http://www.hioki.in / E-mail: info@hioki.in HIOKI SINGAPORE PTE. LTD. : 33 Ubi Avenue 3, #03-02 Vertex, Singapore 40	Ţel.	(664)681-1130 01800 027-4848	

6 Corporate Drive, Cranbury, NJ 08512 USA TEL +1-609-409-9109 / FAX +1-609-409-9108 http://www.hiokiusa.com / E-mail: hioki@hiokiusa.com

To synchronize the PW3198 clock, Accessory: Connection cable set

33 Ubi Avenue 3, #03-02 Vertex, Singapore 408868 TEL +65-6634-7677 FAX +65-6634-7477 E-mail: info@hioki.com.sg

All information correct as of Apr. 25, 2011. All specifications are subject to change without notice.

ventas@final-test.net

CE